Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com

Selina ICSE Solutions for Class 9 Chemistry Chapter 4 The Language of Chemistry

Page No: 8

Question 1.
What is a symbol? What information does it convey?
Solution:
A symbol is the short form which stands for the atom of a specific element or the abbreviations used for the names of elements.

1. It represents a specific element.
2. It represents one atom of an element.
3. A symbol represents how many atoms are present in its one gram (gm) atom.
4. It represents the number of times an atom is heavier than one atomic mass unit (amu) taken as a standard.

Question 2

Why is the symbol S for sulphur, but Na for sodium and Si for silicon?
Solution:
In most cases, the first letter of the name of the element is taken as the symbol for that element and written in capitals (e.g. for sulphur, we use the symbol S). In cases where the first letter has already been adopted, we use a symbol derived from the Latin name (e.g. for sodium/Natrium, we use the symbol Na). In some cases, we use the initial letter in capital together with a small letter from its name (e.g. for silicon, we use the symbol Si).
Question 3.
Write the full form of IUPAC. Name the elements represented by the following symbols:
$\mathrm{Au}, \mathrm{Pb}, \mathrm{Sn}, \mathrm{Hg}$
Solution:
The full form of IUPAC is International Union of Pure and Applied Chemistry.
Names of the elements:
Au - Gold
Pb - Lead
Sn - Tin
Hg - Mercury
Question 4.
If the symbol for Cobalt, Co, were written as CO , what would be wrong with it?
Solution:

Student's Favourite Academy

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com
Co stands for Cobalt. If we write CO, then it would mean that it is a compound containing two non-metal ions, i.e. carbon and oxygen, which forms carbon monoxide gas.
Question 5(d).
$2 \mathrm{H}_{2}$
Solution:
(a) H stands for one atom of hydrogen.
(b) H_{2} stands for one molecule of hydrogen.
(c) 2 H stands for two atoms of hydrogen.

Question 6.

What is meant by atomicity? Name the diatomic element.

Solution:

The number of atoms of an element that join together to form a molecule of that element is known as its atomicity. Diatomic molecules: $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{Cl}_{2}$ Question 7(a).
Explain the terms 'valency' and 'variable valency'.
Solution:

1. Valency of Na is +1 because it can lose one electron.
2. Valency of O is -2 because it can accept two electrons.

Variable valency: It is the combining capacity of an element in which the metal loses more electrons from a shell next to a valence shell in addition to electrons of the valence shell.

Question 7(b).
How are the elements with variable valency named? Explain with an example.
Solution:
If an element exhibits two different positive valencies, then

1. for the lower valency, use the suffix -OUS at the end of the name of the metal
2. for the higher valency, use the suffix -IC at the end of the name of the metal.

Example:

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468

Element	Lower valency	Higher valency
Ferrum (Iron)	Ferrous $\left(\mathrm{Fe}^{2+}\right)$	Ferric $\left(\mathrm{Fe}^{3+}\right)$

Question 8.
Give the formula and valency of:

1. aluminate \qquad
2. chromate \qquad
3. aluminium \qquad
4. cupric \qquad
Solution:

| | Name | Formula | Valency |
| :---: | :---: | :---: | :---: | :---: |
| a. | Aluminate | AlO_{2} | -2 |
| b. | Chromate | CrO_{4} | -2 |
| c. | Aluminium | Al | +3 |
| d. | Cupric | Cu | +2 |

Student's Favourite Academy

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com
Question 9.b
What is the significance of formula?
Solution:
Chemical formula: The chemical formula of a substance (element or compound) is a symbolic representation of the actual number of atoms present in one molecule of that substance.
It also indicates the fixed proportion by weight in which atoms combine.

Rules:

(i) The positive and negative radicals are written side by side (+ve first) with their charge as a superscript on the right side.
(ii) Charges are then interchanged and written as a subscript.
(iii) The final formula is written without the sign of charge, e.g. $\mathrm{Hg}_{2} \mathrm{O}$

1. $\mathrm{Hg}^{1+\mathrm{O}^{2}}$
2.

3. $\mathrm{Hg}_{2} \mathrm{O}$

Question 10(a).
What do you understand by the following terms?
Acid radical
Solution:
Acid radical: The electronegative or negatively charged radical is called an acid radical. Examples: $\mathrm{Cl}^{-}, \mathrm{O}^{2-}$

Question 10(b).
What do you understand by the following terms? Basic radical
Solution:
Basic radical: The electropositive or positively charged radical is called a basic radical.
Examples: $\mathrm{K}^{+}, \mathrm{Na}^{+}$
Question 11.

Match the following:

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Compound

(a) Boric acid	

(b) Phosphoric acid	ii. SiO_{2}
(c) Nitrous acid	iii. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(d) Nitric acid	iv. KOH
(e) Sulphurous acid	v. CaCO_{3}
(f) Sulphuric acid	vi. NaHCO_{3}
(g) Hydrochloric acid	vii. $\mathrm{H}_{2} \mathrm{~S}$
(h) Silica (sand)	viii. $\mathrm{H}_{2} \mathrm{O}$

Student's Favourite Acaulemy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
(i) Caustic soda (sodium hydroxide)
x. CH_{4}
(j) Caustic potash (potassium hydroxide)

(k) Washing soda(sodium carbonate)	
(I) Baking soda(sodium bicarbonate)	

(m) Lime stone.(calcium carbonate)	

(n) Water	xiv. HNO_{3}
(o) Hydrogen sulphide	xv. HNO_{2}
(p) Ammonia	xvi. $\mathrm{H}_{3} \mathrm{BO}_{3}$
(q) Phosphine	xvii. $\mathrm{H}_{3} \mathrm{PO}_{4}$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com

xviii. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Solution:

Compound	Formula (Ans)
(a) Boric acid	xvi. $\mathrm{H}_{3} \mathrm{BO}_{3}$
(b) Phosphoric acid	xvii. $\mathrm{H}_{3} \mathrm{PO}_{4}$
(c) Nitrous acid	xv. HNO_{2}
(d) Nitric acid	xiv. HNO_{3}
(e) Sulphurous acid	
(f) Sulphuric acid	xiii. $\mathrm{H}_{2} \mathrm{SO}_{3}$
(g) (a) Hydrochloric acid	
(H2 HO_{4}	

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468

(h) Silica (sand)	ii. SiO_{2}
(i) Caustic soda (sodium hydroxide)	i. NaOH
(j) Caustic potash (potassium hydroxide)	iv. KOH
(k) Washing soda (sodium carbonate)	iii. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(I) Baking soda (sodium bicarbonate)	vi. NaHCO_{3}
(m) Lime stone (calcium carbonate)	v. CaCO_{3}
(n) Water	viii. $\mathrm{H}_{2} \mathrm{O}$
(o) Hydrogen sulphide	vii. $\mathrm{H}_{2} \mathrm{~S}$
(p) Ammonia	xi. NH_{3}
(q) Phosphine	ix. PH_{3}
(r) Methane	x. CH_{4}

Student's Favourite Academy

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Question 12.
Select the basic and acidic radicals in the following compounds.

1. MgSO_{4}
2. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
3. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
4. ZnCO_{3}
5. $\mathrm{Mg}(\mathrm{OH})_{2}$

Solution:

	Acidic radical	Basic radical
MgSO_{4}	$\mathrm{SO}_{4}{ }^{-}$	Mg+
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	SO_{4}	$\mathrm{NH}_{4}{ }^{+}$
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	$\mathrm{SO}_{4}{ }^{-}$	Al^{3+}
ZnCO_{3}	$\mathrm{CO}_{3}{ }^{-}$	Z ${ }^{2+}$
$\mathrm{Mg}(\mathrm{OH})_{2}$	OH^{-}	Mg2+

Question 13.
Write chemical formula of the sulphate of Aluminium, Ammonium and Zinc.

Solution:

Valencies of aluminium, ammonium and zinc are 3,1 and 2, respectively.
The valency of sulphate is 2 .

Student's Favourite Academy

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com
Hence, chemical formulae of the sulphates of aluminium, ammonium and zinc are $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and ZnSO_{4}.
Question 14.
The valency of an element A is 3 and that of element B is 2 . Write the formula of the compound formed by the combination of A and B
Solution:
Formula of the compound $=\mathrm{A}_{2} \mathrm{~B}_{3}$
Question 15.
Write the chemical names of the following compounds:

1. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
2. $\mathrm{K}_{2} \mathrm{CO}_{3}$
3. $\mathrm{K}_{2} \mathrm{MnO}_{4}$
4. $\mathrm{Mn}_{3}\left(\mathrm{BO}_{3}\right)_{2}$
5. $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$
6. $\mathrm{Na}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$
7. $\mathrm{Ba}\left(\mathrm{ClO}_{3}\right)_{2}$
8. $\mathrm{Ag}_{2} \mathrm{SO}_{3}$
9. $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{~Pb}$
10. $\mathrm{Na}_{2} \mathrm{SiO}_{3}$

Solution:

Chemical names of compounds:

1. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ - Calcium phosphate
2. $\mathrm{K}_{2} \mathrm{CO}_{3}$ - Potassium carbonate
3. $\mathrm{K}_{2} \mathrm{MnO}_{4}$ - Potassium manganate
4. $\mathrm{Mn}_{3}\left(\mathrm{BO}_{3}\right)_{2}$ - Manganese (II) borate
5. $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$ - Magnesium hydrogen carbonate
6. $\mathrm{Na}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ - Sodium ferrocyanide
7. $\mathrm{Ba}\left(\mathrm{ClO}_{3}\right)_{2}$ - Barium chlorate
8. $\mathrm{Ag}_{2} \mathrm{SO}_{3}$ - Silver sulphite
9. $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{~Pb}$ - Lead acetate
10. $\mathrm{Na}_{2} \mathrm{SiO}_{3}$ - Sodium silicate

Question 16
Write the basic radicals and acidic radicals of the following and then write the chemical formulae of these compounds.

1. Barium sulphate
2. Bismuth nitrate

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com
3. Calcium bromide
4. Ferrous sulphide
5. Chromium sulphate
6. Calcium silicate
7. Potassium ferrocyanide
8. Stannic oxide
9. Magnesium phosphate
10. Sodium zincate
11. Stannic phosphate
12. Sodium thiosulphate
13. Potassium manganate
14. Nickel bisulphate

Solution:

Compounds	Acidic	Basic	Chemical
radical	radical	formulae	
Barium sulphate	$\mathrm{SO}_{4}{ }^{2-}$	Ba^{2+}	BaSO_{4}
Bismuth nitrate	$\mathrm{NO}_{3}{ }^{-}$	Bi^{3+}	${\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}}$
Calcium bromide	Br^{-}	Ca^{2+}	CaBr_{2}
Ferrous sulphide			Fe^{2+}

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468

ouritacademy@gmail.c			
Chromium sulphate	$\mathrm{SO}_{4}{ }^{\text {- }}$	Cr^{3+}	$\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
Calcium silicate	$\mathrm{SiO}_{4}{ }^{\text {- }}$	Ca^{2+}	$\mathrm{Ca}_{2} \mathrm{SiO}_{4}$
Potassium ferrocyanide	$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4}$	K^{1+}	$\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
Stannic oxide	O^{2}	Sn ${ }^{+}$	SnO_{2}
Magnesium phosphate	$\left(\mathrm{PO}_{4}\right)^{3-}$	Mg^{2+}	$\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
Sodium zincate	ZnO ${ }^{-}$	Na ${ }^{1+}$	$\mathrm{Na}_{2} \mathrm{ZnO}_{2}$
Stannic phosphate	$\left(\mathrm{PO}_{4}\right)^{3-}$	Sn^{4+}	$\mathrm{Sn}_{3}\left(\mathrm{PO}_{4}\right)_{4}$
Sodium thiosulphate	$\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)^{2-}$	Na^{1+}	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
Potassium manganate	$\mathrm{MnO}_{4}{ }^{\text {2- }}$	K^{1+}	$\mathrm{K}_{2} \mathrm{MnO}_{4}$

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468

Nickel bisulphate	1-	Ni^{++}	$\mathrm{Ni}\left(\mathrm{HSO}_{3}\right)_{3}$
Nickel bisulphate		Nior	3

Question 16.
Give the names of the following compounds.

1. NaClO
2. NaClO_{2}
3. NaClO_{3}
4. NaClO_{4}

Solution:

1. NaClO - Sodium hypochlorite
2. $\mathrm{NaClO}_{2}-$ Sodium chlorite
3. $\mathrm{NaClO}_{3}-$ Sodium chlorate
4. $\mathrm{NaClO}_{4}-$ Sodium perchlorate

Question 18(a).
Complete the following statements by selecting the correct option :
The formula of a compound represents
i. an atom
ii. a particle
iii. a molecule
iv. a combination

Solution:
iii. The formula of a compound represents a molecule.

Question 18(b).
Complete the following statements by selecting the correct option :
The correct formula of aluminium oxide is
i. AlO_{3}
ii. AlO_{2}
iii. $\mathrm{Al}_{2} \mathrm{O}_{3}$

Solution:
iii. The correct formula of aluminium oxide is $\mathrm{Al}_{2} \mathrm{O}_{3}$.

Question 18(c).
Complete the following statements by selecting the correct option :

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com
The valency of nitrogen in nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$ is
i. one
ii. two
iii. three
iv. four

Solution:
iv. The valency of nitrogen in nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$ is four.

Page No: 13

Question 1.
Balance the following equations:

1. $\mathrm{Fe}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2}$
2. $\mathrm{Ca}+\mathrm{N}_{2} \rightarrow \mathrm{Ca}_{3} \mathrm{~N}_{2}$
3. $\mathrm{Zn}+\mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2}$
4. $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO} \rightarrow \mathrm{Fe}+\mathrm{CO}_{2}$
5. $\mathrm{PbO}+\mathrm{NH}_{3} \rightarrow \mathrm{~Pb}+\mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$
6. $\mathrm{Pb}_{3} \mathrm{O}_{4} \rightarrow \mathrm{PbO}+\mathrm{O}_{2}$
7. $\mathrm{PbS}+\mathrm{O}_{2} \rightarrow \mathrm{PbO}+\mathrm{SO}_{2}$
8. $\mathrm{S}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}$
9. $\mathrm{S}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
10. $\mathrm{MnO}_{2}+\mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
11. $\mathrm{C}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}$
12. $\mathrm{KOH}+\mathrm{Cl}_{2} \rightarrow \mathrm{KCl}+\mathrm{KClO}+\mathrm{H}_{2} \mathrm{O}$
13. $\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{2}+\mathrm{HNO}_{3}$
14. $\mathrm{Pb}_{3} \mathrm{O}_{4}+\mathrm{HCl} \rightarrow \mathrm{PbCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
15. $\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2} \rightarrow \mathrm{HCl}+\mathrm{O}_{2}$
16. $\mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
17. $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{S}$
18. $\mathrm{P}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{3} \mathrm{PO}_{4}$
$19 . \mathrm{Zn}+\mathrm{HNO}_{3} \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}$
Solution:
Balanced chemical equations:
19. $3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$
20. $3 \mathrm{Ca}+\mathrm{N}_{2} \rightarrow \mathrm{Ca}_{3} \mathrm{~N}_{2}$
21. $\mathrm{Zn}+2 \mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2}$
22. $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
23. $3 \mathrm{PbO}+2 \mathrm{NH}_{3} \rightarrow 3 \mathrm{~Pb}+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy @ gmail.com
6. $2 \mathrm{~Pb}_{3} \mathrm{O}_{4} \rightarrow 6 \mathrm{PbO}+\mathrm{O}_{2}$
7. $2 \mathrm{PbS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{PbO}+2 \mathrm{SO}_{2}$
8. $\mathrm{S}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 3 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
9. $\mathrm{S}+6 \mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+6 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
10. $\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
11. $\mathrm{C}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}$
12. $2 \mathrm{KOH}+\mathrm{Cl}_{2} \rightarrow \mathrm{KCl}+\mathrm{KClO}+\mathrm{H}_{2} \mathrm{O}$
$13.2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{2}+\mathrm{HNO}_{3}$
14. $\mathrm{Pb}_{3} \mathrm{O}_{4}+8 \mathrm{HCl} \rightarrow 3 \mathrm{PbCl}_{2}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
15. $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Cl}_{2} \rightarrow 4 \mathrm{HCl}+\mathrm{O}_{2}$
16. $2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
$17.2 \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{~S} \rightarrow 2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{S}$
18. $\mathrm{P}+5 \mathrm{HNO}_{3} \rightarrow 5 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{3} \mathrm{PO}_{4}$
$19 . \mathrm{Zn}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2}$
Page No: 17

Question 1.
Fill in the blanks:

1. Dalton used symbol \qquad for oxygen \qquad for hydrogen.
2. Symbol represents \qquad atom(s) of an element.
3. Symbolic expression for a molecule is called \qquad .
4. Sodium chloride has two radicals. Sodium is a \qquad radical while chloride is \qquad radical.
5. Valency of carbon in CH_{4} is \qquad , in $\mathrm{C}_{2} \mathrm{H}_{6}$ \qquad in $\mathrm{C}_{2} \mathrm{H}_{4}$ \qquad and in $\mathrm{C}_{2} \mathrm{H}_{2}$ is
\qquad .
6. Valency of Iron in FeCl_{2} is \qquad and in FeCl_{3} it is \qquad -
7. Formula of iron (ill) carbonate is \qquad .

Solution:

1. Dalton used symbol [O] for oxygen,[H] for hydrogen.
2. Symbol represents gram atom(s) of an element.
3. Symbolic expression for a molecule is called molecular formula.
4. Sodium chloride has two radicals. Sodium is a basic radical, while chloride is an acid radical.
5. Valency of carbon in CH_{4} is 4 , in $\mathrm{C}_{2} \mathrm{H}_{6} 4$, in $\mathrm{C}_{2} \mathrm{H}_{4} 4$ and in $\mathrm{C}_{2} \mathrm{H}_{2}$ is 4 .
6. Valency of iron in FeCl_{2} is 2 and in FeCl_{3} it is 3 .
7. Formula of iron (III) carbonate is $\mathrm{Fe}_{2}\left[\mathrm{CO}_{3}\right]_{3}$.

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Question 2.
Complete the following table.

Solution:

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com

Acid Racticals Basic Racticals \downarrow	Chloride	Nitrate	Sulphate	Carbonate	Hydroxide	Phosphate
Magnesium	MgCl_{2}	$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	MgSO_{4}	MgCO_{3}	$\mathrm{Mg}(\mathrm{OH})_{2}$	$\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
Sodium	NaCl	NaNO_{3}	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	NaOH	$\mathrm{Na}_{3} \mathrm{PO}_{4}$
Zinc	ZnCl_{2}	$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$	ZnSO_{4}	ZnCO_{3}	$\mathrm{Zn}[\mathrm{OH}]_{2}$	$\mathrm{Zn}_{3}\left[\mathrm{PO}_{4}\right)_{2}$
Silver	AgCl	AgNO_{3}	$\mathrm{Ag}_{2} \mathrm{SO}_{4}$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	AgOH	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$
Ammonium	$\mathrm{NH}_{4} \mathrm{Cl}$	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	$\left[\mathrm{NH}_{4}\right]_{2}$			
SO_{4}	$\left[\mathrm{NH}_{4}\right]_{2} \mathrm{SO}_{4}$	NH 4 OH	$\left[\mathrm{NH}_{4}\right]_{3} \mathrm{PO}_{4}$			
Calcium	$\mathrm{CaCl} 2_{2}$	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	CaSO_{4}	CaCO_{3}	$\mathrm{Ca}[\mathrm{OH}]_{2}$	$\mathrm{Ca}_{3}\left[\mathrm{PO}_{4}\right]_{2}$
Iron (II)	$\mathrm{FeCl} 2_{2}$	$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$	FeSO_{4}	FeCO_{3}	$\mathrm{Fe}[\mathrm{OH}]_{2}$	$\mathrm{Fe}_{3}\left[\mathrm{PO}_{4}\right]_{2}$
Potassium	KCl	KNO_{3}	$\mathrm{~K}_{2} \mathrm{SO}_{4}$	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	KOH	$\mathrm{K}_{3} \mathrm{PO}_{4}$

Question 3.

Sodium chloride reacts with silver nitrate to produce silver chloride and sodium nitrate

1. Write the equation.
2. Check whether it is balanced, if not balance it.
3. Find the weights of reactants and products.
4. State the law which this equation satisfies.

Solution:
(a) $\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{AgCl} \downarrow$
(b) It is a balanced equation.
(c) Weights of reactants: $\mathrm{NaCl}-58.44, \mathrm{AgNO}_{3}-169.87$

Weights of products: $\mathrm{NaNO}_{3}-84.99, \mathrm{AgCl}-143.32$
$\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{AgCl}$
$(23+35.5)+(108+14+48) \rightarrow(23+14+48)+(108+35.5)$
$58.5+170 \rightarrow 85+143.5$
$228.5 \mathrm{~g} \rightarrow 228.5 \mathrm{~g}$

Student's Favourite Academy

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com
(d) Law of conservation of mass: Matter is neither created nor destroyed in the course of a chemical reaction.

Question 4(a).
What information does the following chemical equation convey? $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ $\mathrm{ZnSO}_{4}+\mathrm{H}_{2}$
Solution:
(a) This equation conveys the following information:

1. The actual result of a chemical change.
2. Substances take part in a reaction, and substances are formed as a result of the reaction.
3. Here, one molecule of zinc and one molecule of sulphuric acid react to give one molecule of zinc sulphate and one molecule of hydrogen.
4. Composition of respective molecules, i.e. one molecule of sulphuric acid contains two atoms of hydrogen, one atom of sulphur and four atoms of oxygen.
5. Relative molecular masses of different substances, i.e. molecular mass of $\mathrm{Zn}=65$
$\mathrm{H}_{2} \mathrm{SO}_{4}=(2+32+64)=98$
$\mathrm{ZnSO}_{4}=(65+32+64)=161$
$\mathrm{H}_{2}=2$
6. 22.4 litres of hydrogen are formed at STP.

Question 4(b).
What information do the following chemical equations convey? $\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
Solution:
(b) This equation conveys the following information:

1. Magnesium reacts with hydrochloric acid to form magnesium chloride and hydrogen gas.
2. 24 g of magnesium reacts with $2(1+35.5)=73 \mathrm{~g}$ of hydrochloric acid to produce $(24+71)$, i.e. 95 g of magnesium chloride.
3. Hydrogen produced at STP is 22.4 litres.

Question 5(a).
What are polyatomic ions? Give two examples.
Solution:
(a) A poly-atomic ion is a charged ion composed of two or more atoms covalently bounded that can be carbonate $\left(\mathrm{CO}_{3}{ }^{2}\right)$ and sulphate $\left(\mathrm{SO}_{4}{ }^{2}\right)$
Question 5(b).
Name the fundamental law that is involved in every equation.

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com

Solution:

(b) The fundamental laws which are involved in every equation are:

1. A chemical equation consists of formulae of reactants connected by plus sign $(+)$ and arrow (\rightarrow) followed by the formulae of products connected by plus sign (+).
2. The sign of an arrow (\rightarrow) is to read 'to form'. It also shows the direction in which reaction is predominant.

Question 6(a).
What is the valency of : fluorine in CaF_{2}
Solution:
(a) Valency of fluorine in CaF_{2} is -1.

Question 6(b).
What is the valency of :
sulphur in SF_{6}
Solution:
(b) Valency of sulphur in SF_{6} is -6.

Question 6(c).

What is the valency of :
phosphorus in PH_{3}
Solution:
(c) Valency of phosphorus in PH_{3} is +3 .

Question 6(d).
What is the valency of : carbon in CH_{4}
Solution:
(d) Valency of carbon in CH_{4} is +4 .

Question 6(e).
What is the valency of :
nitrogen in the following compounds:
(i) $\mathrm{N}_{2} \mathrm{O}_{3}$ (ii) $\mathrm{N}_{2} \mathrm{O}_{5}$ (iii) NO_{2} (iv) NO

Solution:
(e) Valency of nitrogen in the given compounds:

1. $\mathrm{N}_{2} \mathrm{O}_{3}=\mathrm{N}$ is +3
2. $\mathrm{N}_{2} \mathrm{O}_{5}=\mathrm{N}$ is +5
3. $\mathrm{NO}_{2}=\mathrm{N}$ is +4
4. $\mathrm{NO}=\mathrm{N}$ is +2

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com

Question 7.

Why should an equation be balanced? Explain with the help of a simple equation. Solution:
According to law of conservation of mass, "matter can neither be created nor be destroyed in a chemical reaction". This is possible only, if total number of atoms on the reactants side is equals to total number of atoms on products side. Thus, a chemical reaction should be always balanced.
Let us consider an example,
$\mathrm{Fe}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2}$
In this equation number of atoms on both sides is not the same, the equation is not balanced.
The balanced form of this equation is given by,
$3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$
Question 8(a).
Write the balanced chemical equations of the following reactions. sodium
hydroxide + sulphuric acid \rightarrow sodium sulphate + water
Solution:
$2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
Question 8(b).
Write the balanced chemical equations of the following reactions. potassium
bicarbonate + sulphuric acid \rightarrow potassium sulphate + carbon dioxide + water
Solution:
$2 \mathrm{KHCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Question 8(c).
Write the balanced chemical equations of the following reactions. iron + sulphuric acid \rightarrow ferrous sulphate + hydrogen.
Solution:
$\mathrm{Fe}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{H}_{2}$

Question 8(d).
Write the balanced chemical equations of the following reactions.
chlorine + sulphur dioxide + water \rightarrow sulphuric acid + hydrogen chloride
Solution:
$\mathrm{Cl}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$

Question 8(e).
Write the balanced chemical equations of the following reactions. silver nitrate \rightarrow silver + nitrogen dioxide + oxygen"
Solution:
$2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{Ag}+2 \mathrm{NO}_{2}+\mathrm{O}_{2}$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com
Question 8(f).
Write the balanced chemical equations of the following reactions.
copper + nitric acid \rightarrow copper nitrate + nitric oxide + water
Solution:
$3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}$

Question 8(g).
Write the balanced chemical equations of the following reactions. ammonia + oxygen \rightarrow nitric oxide + water
Solution:
$4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \xrightarrow{\text { Pt. } 800} 6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{NO} \uparrow+$ Heat

Question 8(h).
Write the balanced chemical equations of the following reactions. barium chloride + sulphuric acid \rightarrow barium sulphate + hydrochloric acid Solution:
$\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{HCl}$

Question 8(i).
Write the balanced chemical equations of the following reactions.
zinc sulphide + oxygen \rightarrow zinc oxide + sulphur dioxide
Solution:
$2 \mathrm{ZnS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO}+2 \mathrm{SO}_{2}$

Question 8(j).
Write the balanced chemical equations of the following reactions.
aluminium carbide + water \rightarrow aluminium hydroxide + methane
Solution:
$\mathrm{Al}_{4} \mathrm{C}_{3}+12 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{CH}_{4}$

Question 8(k).
Write the balanced chemical equations of the following reactions.
iron pyrites $\left(\mathrm{FeS}_{2}\right)+$ oxygen \rightarrow ferric oxide + sulphur dioxide
Solution:
$4 \mathrm{FeS}_{2}+11 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{SO}_{2}$

Question 8(I).
Write the balanced chemical equations of the following reactions.
potassium permanganate + hydrochloric acid \rightarrow potassium chloride + manganese

Student's Favourite Academy

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com
chloride + chlorine + water
Solution:
$2 \mathrm{KMnO}_{4}+\mathrm{HCl} \rightarrow 2 \mathrm{KCl}+2 \mathrm{MnCl}_{2}+5 \mathrm{Cl}_{2}+8 \mathrm{H}_{2} \mathrm{O}$

Question 8(m).
Write the balanced chemical equations of the following reactions.
aluminium sulphate + sodium hydroxide \rightarrow sodium sulphate + sodium
meta aluminate + water.
Solution:
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+8 \mathrm{NaOH} \rightarrow 3 \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{NaAlO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

Question 8(n).
Write the balanced chemical equations of the following reactions.
aluminium + sodium hydroxide + water \rightarrow sodium meta aluminate + hydrogen
Solution:
$2 \mathrm{Al}+2 \mathrm{NaOH}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaAlO}_{2}+3 \mathrm{H}_{2}$

Question 8(o).
Write the balanced chemical equations of the following reactions. potassium dichromate + sulphuric acid \rightarrow
potassium sulphate + chromium sulphate + water + oxygen .
Solution:
$2 \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+8 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{O}_{2}$

Question 8(p).
Write the balanced chemical equations of the following reactions.
potassium dichromate + hydrochloric acid \rightarrow Potassium chloride + chromium
chloride + water + chlorine
Solution:
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+14 \mathrm{HCl} \rightarrow 2 \mathrm{KCl}+2 \mathrm{CrCl}_{3}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Cl}_{2}$

Question 8(q).
Write the balanced chemical equations of the following reactions. sulphur + nitric acid \rightarrow sulphuric acid + nitrogen dioxide + water.
Solution:
$\mathrm{S}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Question 8(r).
Write the balanced chemical equations of the following reactions. sodium chloride + manganese dioxide + sulphuric acid \rightarrow sodium

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com
hydrogen sulphate + manganese sulphate + water + chlorine .
Solution:
$2 \mathrm{NaCl}+\mathrm{MnO}_{2}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{NaHSO}_{4}+\mathrm{MnSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$

Question 9(a).
Define atomic mass unit.
Solution:
Atomic mass unit (amu) is equal to one-twelfth the mass of an atom of carbon-12 (atomic mass of carbon taken as 12).

Question 9(b)(ii)
Calculate the molecular mass of the following:
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
Given atomic mass of $\mathrm{Cu}=63 \cdot 5, \mathrm{H}=1, \mathrm{O}=16, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{Mg}=24, \mathrm{~S}=32$

Solution:

Molecular mass of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
$=(2 \times 14)+(8 \times 1)+12+(3 \times 16)$
$=28+8+12+48$
$=96$

Question 9(b)(iii)
Calculate the molecular mass of the following:
$\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
Given atomic mass of $\mathrm{Cu}=63 \cdot 5, \mathrm{H}=1, \mathrm{O}=16, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{Mg}=24, \mathrm{~S}=32$
Solution:
Molecular mass of $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
$=(14 \times 2)+(4 \times 1)+12+16$
$=28+4+12+16$
$=60$

Question 9(b)(iv)
Calculate the molecular mass of the following:
$\mathrm{Mg}_{3} \mathrm{~N}_{2}$
Given atomic mass of $C u=63 \cdot 5, H=1, O=16, C=12, N=14, M g=24, S=32$
Solution:
Molecular mass of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$
$=(3 \times 24)+(2 \times 14)$
$=72+28$
$=100$

Question 10(a).
Choose the correct answer from the options given below.
Modern atomic symbols are based on the method proposed by
i. Bohr
ii. Dalton
iii. Berzelius
iv. Alchemist

Solution:
iii. Berzelius

Question 10(b).
Choose the correct answer from the options given below.
The number of carbon atoms in a hydrogen carbonate radical is
i. One
ii. Two
iii. Three
iv. Four

Solution:
One

Question 10(c).
Choose the correct answer from the options given below.
The formula of iron (III) sulphate is
i. $\mathrm{Fe}_{3} \mathrm{SO}_{4}$
ii. $\mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{3}$
iii. $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
iv. FeSO_{4}

Solution:
iii. $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Question 10(d).
Choose the correct answer from the options given below.
In water, the hydrogen-to-oxygen mass ratio is
i. 1: 8
ii. 1: 16
iii. 1:32
iv. 1: 64

Solution:
i. 1:8

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com
Question 10(e).
Choose the correct answer from the options given below.
The formula of sodium carbonate is $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and that of calcium hydrogen carbonate is
i. CaHCO_{3}
ii. $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
iii. $\mathrm{Ca}_{2} \mathrm{HCO}_{3}$
iv. $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{3}$

Solution:
i. $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$

Solution 11.
(a) A molecular formula represent The Molecule of an element or of a Compound.
(b) The molecular formula of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ represents 18 parts by mass of water.
(c) A balanced equation obeys the law of conservation of mass wherever unbalanced equation does not obey this law.
(d) CO and Co represent carbon-monoxide and cobalt respectively.

Solution 12.

1. Relative molecular mass of CHCl 3

$$
\begin{aligned}
& =12+1+(3 \times 35.5) \\
& =12+1+106.5 \\
& =119.5
\end{aligned}
$$

2. Relative molecular mass of (NH4)2 Cr2O7

$$
\begin{aligned}
& =(14 \times 2)+(1 \times 8)+(52 \times 2)+(16 \times 7) \\
& =28+8+104+112 \\
& =252
\end{aligned}
$$

3. Relative molecular mass of CuSO4. 5 H 2 O

$$
\begin{aligned}
& =63.5+32+(16 \times 4)+5(2+16) \\
& =159.5+90 \\
& =249.5
\end{aligned}
$$

4. Relative molecular mass of (NH 4) 2 SO 4
$=(2 \times 14)+(8 \times 1)+32+(4 \times 16)$
$=28+8+32+64$
= 132
5. Relative molecular mass of CH 3 COONa
$=(12 \times 2)+(1 \times 3)+(16 \times 2)+23$
$=24+3+32+23$
= 82
6. Potassium chlorate (KClO 3$)$

$$
=39.1+35.5+(16 \times 3)
$$

Student's Favourite Academy

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com
$=39.1+35.5+48$
$=122.6$
7. Ammonium chloroplatinate $(\mathrm{NH} 4) 2 \mathrm{PtCl} 6$

$$
\begin{aligned}
& =(14 \times 2)+(1 \times 8)+195.08+(35.5 \times 6) \\
& =28+8+195.08+213 \\
& =444.08
\end{aligned}
$$

Solution 13.

Compound	Empirical formula
(a) Benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$	CH
CompoundEmpirical formula	
(b) Glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$	$\mathrm{CH}_{2} \mathrm{O}$
CompoundEmpirical formula	
(c) Acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$	CH^{2}
CompoundEmpirical formula	
(d) Acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$	$\mathrm{CH}_{2} \mathrm{O}$

Solution 14.

Relative molecular mass of $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
$=24+32+(16 \times 4)+7(2+16)$
$=24+32+64+126$
$=246$
26 g of Epsom salt contains 126 g of water of crystallisation.
Hence, 100 g of Epsom salt contains

$$
\begin{aligned}
& \frac{100 \times 126}{246} \\
& =51.2
\end{aligned}
$$

The \% of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}=51.2$

Solution 15.

(a) Relative molecular mass of $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$
$=40.07+(1 \times 4)+(30.9 \times 2)+(16 \times 8)$
$=40.07+4+61.8+128$
$=233.87$
$233.87 \mathrm{~g} \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ contains 61.8 g P
So, $100 \mathrm{~g} \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ contains

$$
\frac{100 \times 61.8}{233.87}=26.42 \mathrm{~g}
$$

The \% of P in $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ is 26.42%.
(b) Relative molecular mass of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
$=(40.07 \times 3)+(30.9 \times 2)+(16 \times 8)$
$=120.21+61.8+128$
$=310.01$
$310.01 \mathrm{~g} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ contains 61.8 g P
So, $100 \mathrm{~g} \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ contains
(IMAGE)
The \% of P in $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ is 19.93%.

Solution 16.

Relative molecular mass of KClO_{3}
$=39.09+35.5+(3 \times 16)$
$=122.59 \mathrm{~g}$

Student's Favourite Academy

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com
$122.59 \mathrm{~g} \mathrm{KClO}_{3}$ contains 39.09 g K
Hence, $100 \mathrm{~g} \mathrm{KClO}_{3}$ contains
$=\frac{100 \times 39.09}{122.59}=31.9 \mathrm{~g}$
$122.59 \mathrm{~g} \mathrm{KClO}_{3}$ contains 35.5 g Cl
Hence, $100 \mathrm{~g} \mathrm{KClO}_{3}$ contains
$=\frac{100 \times 35.5}{122.59}=28.9 \mathrm{~g}$
$122.59 \mathrm{~g} \mathrm{KClO}_{3}$ contains 48 g O Hence, $100 \mathrm{~g} \mathrm{KClO}_{3}$ contains
$=\frac{100 \times 48}{122.59}=39.1 \mathrm{~g}$
The percentages of K, Cl and O in KClO_{3} are $31.9 \%, 28.9 \%$ and 39.1%, respectively.

Solution 17.
Relative molecular mass of urea is

Element	No. of atoms	Atomic mass	Total
N	2	14	28
C	1	12	12
H	4	1	4

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468

0	Email : favouriteacademy@gmail.com	16	16
$12+16+28+4]=60$			

$[12+16+28+4]=60$
Hence, relative molecular mass of urea $=60$

$$
\begin{aligned}
\text { Percentage of carbon } & =\frac{\text { Wt of carbon }}{\text { Total wt of urea }} \times 100=\frac{12}{60} \times 100 \\
& =20 \text { or } 20 \%
\end{aligned}
$$

Selina ICSE Solutions for Class 9 Chemistry Chapter 4 The Language of Chemistry

Page No: 8

Question 1.

What is a symbol? What information does it convey?

Solution:

A symbol is the short form which stands for the atom of a specific element or the abbreviations used for the names of elements.

1. It represents a specific element.
2. It represents one atom of an element.
3. A symbol represents how many atoms are present in its one gram (gm) atom.
4. It represents the number of times an atom is heavier than one atomic mass unit (amu) taken as a standard.

Question 2

Why is the symbol S for sulphur, but Na for sodium and Si for silicon?
Solution:
In most cases, the first letter of the name of the element is taken as the symbol for that element and written in capitals (e.g. for sulphur, we use the symbol S). In cases where the first letter has already been adopted, we use a symbol derived from the Latin name (e.g. for sodium/Natrium, we use the symbol Na). In some cases, we use the initial letter in capital together with a small letter from its name (e.g. for silicon, we use the symbol Si).

Question 3.
Write the full form of IUPAC. Name the elements represented by the following symbols:
$\mathrm{Au}, \mathrm{Pb}, \mathrm{Sn}, \mathrm{Hg}$

Solution:

The full form of IUPAC is International Union of Pure and Applied Chemistry.
Names of the elements:

Student's Favourite Academy

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com
Au-Gold
Pb - Lead
Sn - Tin
Hg - Mercury
Question 4.
If the symbol for Cobalt, Co, were written as CO, what would be wrong with it?
Solution:
Co stands for Cobalt. If we write CO, then it would mean that it is a compound containing two non-metal ions, i.e. carbon and oxygen, which forms carbon monoxide gas.

Question 5(d).
$2 \mathrm{H}_{2}$
Solution:
(a) H stands for one atom of hydrogen.
(b) H_{2} stands for one molecule of hydrogen.
(c) 2 H stands for two atoms of hydrogen.

Question 6.
What is meant by atomicity? Name the diatomic element.

Solution:

The number of atoms of an element that join together to form a molecule of that element is known as its atomicity. Diatomic molecules: $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{Cl}_{2}$

Question 7(a).
Explain the terms 'valency' and 'variable valency'.
Solution:

1. Valency of Na is +1 because it can lose one electron.
2. Valency of O is -2 because it can accept two electrons.

Variable valency: It is the combining capacity of an element in which the metal loses more electrons from a shell next to a valence shell in addition to electrons of the valence shell.

Question 7(b).
How are the elements with variable valency named? Explain with an example.
Solution:
If an element exhibits two different positive valencies, then

1. for the lower valency, use the suffix -OUS at the end of the name of the metal
2. for the higher valency, use the suffix -IC at the end of the name of the metal.

Example:

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468

| Element | Lowail : favouriteacademy@gmail.com | Higher valency |
| :--- | :--- | :--- | :--- |
| Ferrum (Iron) | Ferrous $\left(\mathrm{Fe}^{2+}\right)$ | Ferric $\left(\mathrm{Fe}^{3+}\right)$ |

Question 8.
Give the formula and valency of:

1. aluminate \qquad .
2. chromate \qquad ..
3. aluminium \qquad .
4. cupric \qquad

Solution:

	Name	Formula	Valency
a.	Aluminate	AlO_{2}	-2
b.	Chromate	CrO_{4}	-2
c.	Aluminium	Al	+3
d.	Cupric	Cu	+2

Question 9.b
What is the significance of formula?
Solution:
Chemical formula: The chemical formula of a substance (element or compound) is a symbolic representation of the actual number of atoms present in one molecule of that substance.
It also indicates the fixed proportion by weight in which atoms combine.

Rules:

(i) The positive and negative radicals are written side by side (+ve first) with their charge as a superscript on the right side.
(ii) Charges are then interchanged and written as a subscript.
(iii) The final formula is written without the sign of charge, e.g. $\mathrm{Hg}_{2} \mathrm{O}$

1. $\mathrm{Hg}^{1+} \mathrm{O}^{2-}$
2.

3. $\mathrm{Hg}_{2} \mathrm{O}$

Student's Favourite Academy

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com
Question 10(a).
What do you understand by the following terms?
Acid radical
Solution:
Acid radical: The electronegative or negatively charged radical is called an acid radical.
Examples: $\mathrm{Cl}^{-}, \mathrm{O}^{2-}$
Question 10(b).
What do you understand by the following terms? Basic radical
Solution:
Basic radical: The electropositive or positively charged radical is called a basic radical.
Examples: $\mathrm{K}^{+}, \mathrm{Na}^{+}$
Question 11.
Match the following:

Compound	Formula
(a) Boric acid	i. NaOH
(b) Phosphoric acid	ii. SiO_{2}
(c) Nitrous acid	iii. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(d) Nitric acid	iv. KOH
(e) Sulphurous acid	v. CaCO_{3}
(f) Sulphuric acid	vi. NaHCO_{3}
(g) Hydrochloric acid	vii. $\mathrm{H}_{2} \mathrm{~S}$
(h) Silica (sand)	viii. $\mathrm{H}_{2} \mathrm{O}$
(i) Caustic soda (sodium hydroxide)	ix. PH_{3}
(j) Caustic potash (potassium hydroxide)	x. CH_{4}
(k) Washing soda(sodium carbonate)	xi. NH_{3}
(I) Baking soda(sodium bicarbonate)	xii. $\mathrm{HCl}^{\text {(m) Lime stone.(calcium carbonate) }}$
(n) Water	xii. $\mathrm{H}_{2} \mathrm{SO}_{3}$

Student's Favourite Acaulemy

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400 101 Phone : 8828132765, 9833035468

(o) Hydrogen sulphide	Email : favouriteacademy@gmail.com
(p) Ammonia	xv. HNO_{2}
(q) Phosphine	xvi. $\mathrm{H}_{3} \mathrm{BO}_{3}$
(r) Methane	xvii. $\mathrm{H}_{3} \mathrm{PO}_{4}$

Solution:

Compound	Formula (Ans)
(a) Boric acid	xvi. $\mathrm{H}_{3} \mathrm{BO}_{3}$
(b) Phosphoric acid	xvii. $\mathrm{H}_{3} \mathrm{PO}_{4}$
(d) Nitrous acid	xv. HNO_{2}
(e) Sulphurous acid	xiv. HNO_{3}
(f) Sulphuric acid	xiii. $\mathrm{H}_{2} \mathrm{SO}_{3}$
(g) (a) Hydrochloric acid	xviii. $\mathrm{H}_{2} \mathrm{SO}_{4}$
(h) Silica (sand)	xii. HCl^{\prime}
(i) Caustic soda	
(sodium hydroxide)	ii. SiO_{2}
(j) Caustic potash (potassium hydroxide)	i. NaOH^{2}
(k) Washing soda	
(sodium carbonate)	iv. KOH^{2}
(l) Baking soda	
(sodium bicarbonate)	iii. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(m) Lime stone	
(calcium carbonate)	vi. NaHCO_{3}
(n) Water	v. CaCO_{3}
(o) Hydrogen sulphide	viii. $\mathrm{H}_{2} \mathrm{O}$
(p) Ammonia	vii. $\mathrm{H}_{2} \mathrm{~S}$

Student's Favourite Academy

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468

| (q) Phosphine | Email : favouriteacademy@gmail.com |
| :--- | :--- | :--- |
| (r) Methane | ix. PH_{3} |

Question 12.
Select the basic and acidic radicals in the following compounds.

1. MgSO_{4}
2. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
3. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
4. ZnCO_{3}
5. $\mathrm{Mg}(\mathrm{OH})_{2}$

Solution:

	Acidic radical	Basic radical
MgSO_{4}	SO_{4}^{-}	Mg^{+}
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	SO_{4}^{-}	NH_{4}^{+}
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	SO_{4}^{-}	Al^{3+}
ZnCO_{3}	CO_{3}^{-}	Zn^{2+}
$\mathrm{Mg}(\mathrm{OH})_{2}$	OH^{-}	Mg^{2+}

Question 13.
Write chemical formula of the sulphate of Aluminium, Ammonium and Zinc.

Solution:

Valencies of aluminium, ammonium and zinc are 3, 1 and 2, respectively.
The valency of sulphate is 2 .
Hence, chemical formulae of the sulphates of aluminium, ammonium and zinc are $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and ZnSO_{4}.

Question 14.
The valency of an element A is 3 and that of element B is 2 . Write the formula of the compound formed by the combination of A and B
Solution:
Formula of the compound $=\mathrm{A}_{2} \mathrm{~B}_{3}$
Question 15.
Write the chemical names of the following compounds:

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

1. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
2. $\mathrm{K}_{2} \mathrm{CO}_{3}$
3. $\mathrm{K}_{2} \mathrm{MnO}_{4}$
4. $\mathrm{Mn}_{3}\left(\mathrm{BO}_{3}\right)_{2}$
5. $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$
6. $\mathrm{Na}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$
7. $\mathrm{Ba}\left(\mathrm{ClO}_{3}\right)_{2}$
8. $\mathrm{Ag}_{2} \mathrm{SO}_{3}$
9. $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{~Pb}$
10. $\mathrm{Na}_{2} \mathrm{SiO}_{3}$

Solution:
Chemical names of compounds:

1. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ - Calcium phosphate
2. $\mathrm{K}_{2} \mathrm{CO}_{3}$ - Potassium carbonate
3. $\mathrm{K}_{2} \mathrm{MnO}_{4}$ - Potassium manganate
4. $\mathrm{Mn}_{3}\left(\mathrm{BO}_{3}\right)_{2}$ - Manganese (II) borate
5. $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}-$ Magnesium hydrogen carbonate
6. $\mathrm{Na}_{4} \mathrm{Fe}(\mathrm{CN})_{6}-$ Sodium ferrocyanide
7. $\mathrm{Ba}\left(\mathrm{ClO}_{3}\right)_{2}-$ Barium chlorate
8. $\mathrm{Ag}_{2} \mathrm{SO}_{3}-$ Silver sulphite
9. $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{~Pb}$ - Lead acetate
10. $\mathrm{Na}_{2} \mathrm{SiO}_{3}$ - Sodium silicate

Question 16
Write the basic radicals and acidic radicals of the following and then write the chemical formulae of these compounds.

1. Barium sulphate
2. Bismuth nitrate
3. Calcium bromide

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com
4. Ferrous sulphide
5. Chromium sulphate
6. Calcium silicate
7. Potassium ferrocyanide
8. Stannic oxide
9. Magnesium phosphate
10. Sodium zincate
11. Stannic phosphate
12. Sodium thiosulphate
13. Potassium manganate
14. Nickel bisulphate

Solution:

Compounds	Acidic radical	Basic radical	Chemical formulae
Barium sulphate	$\mathrm{SO}_{4}{ }^{2-}$	Ba^{2+}	BaSO_{4}
Bismuth nitrate	$\mathrm{NO}_{3}{ }^{-}$	$B i^{3+}$	$\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}$
Calcium bromide	Br^{-}	Ca^{2+}	CaBr_{2}
Ferrous sulphide	S^{2-}	Fe^{2+}	FeS
Chromium sulphate	$\mathrm{SO}_{4}{ }^{2-}$	Cr^{3+}	$\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
Calcium silicate	$\mathrm{SiO}_{4}{ }^{2-}$	Ca^{2+}	$\mathrm{Ca}_{2} \mathrm{SiO}_{4}$
Potassium ferrocyanide	$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$	K^{1+}	$\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
Stannic oxide	O^{2-}	Sn^{2+}	SnO_{2}
Magnesium phosphate	$\left(\mathrm{PO}_{4}\right)^{3-}$	Mg^{2+}	$\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
Sodium zincate	ZnO^{2-}	Na^{1+}	$\mathrm{Na}_{2} \mathrm{ZnO}_{2}$
Stannic phosphate	$\left(\mathrm{PO}_{4}\right)^{3-}$	Sn^{4+}	$\mathrm{Sn}_{3}\left(\mathrm{PO}_{4}\right)_{4}$
Sodium thiosulphate	$\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)^{2-}$	Na^{1+}	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468

Potassium manganate	Email : favouriteacademy@gmail.com							$\mathrm{MnO}_{4}{ }^{2-}$	$\mathrm{K}_{2} \mathrm{MnO}_{4}$
Nickel bisulphate	$\mathrm{HSO}_{4}{ }^{1-}$	Ni^{3+}	$\mathrm{Ni}\left(\mathrm{HSO}_{4}\right)_{3}$						

Question 16.
Give the names of the following compounds.

1. NaClO
2. NaClO_{2}
3. NaClO_{3}
4. NaClO_{4}

Solution:

1. NaClO - Sodium hypochlorite
2. NaClO_{2} - Sodium chlorite
3. $\mathrm{NaClO}_{3}-$ Sodium chlorate
4. NaClO_{4} - Sodium perchlorate

Question 18(a).
Complete the following statements by selecting the correct option :
The formula of a compound represents
i. an atom
ii. a particle
iii. a molecule
iv. a combination

Solution:
iii. The formula of a compound represents a molecule.

Question 18(b).
Complete the following statements by selecting the correct option :
The correct formula of aluminium oxide is
i. AlO_{3}
ii. AlO_{2}
iii. $\mathrm{Al}_{2} \mathrm{O}_{3}$

Solution:
iii. The correct formula of aluminium oxide is $\mathrm{Al}_{2} \mathrm{O}_{3}$.

Question 18(c).
Complete the following statements by selecting the correct option :
The valency of nitrogen in nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$ is
i. one

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
ii. two
iii. three
iv. four

Solution:
iv. The valency of nitrogen in nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$ is four.

Page No: 13
Question 1.
Balance the following equations:

1. $\mathrm{Fe}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2}$
2. $\mathrm{Ca}+\mathrm{N}_{2} \rightarrow \mathrm{Ca}_{3} \mathrm{~N}_{2}$
3. $\mathrm{Zn}+\mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2}$
4. $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO} \rightarrow \mathrm{Fe}+\mathrm{CO}_{2}$
5. $\mathrm{PbO}+\mathrm{NH}_{3} \rightarrow \mathrm{~Pb}+\mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$
6. $\mathrm{Pb}_{3} \mathrm{O}_{4} \rightarrow \mathrm{PbO}+\mathrm{O}_{2}$
7. $\mathrm{PbS}+\mathrm{O}_{2} \rightarrow \mathrm{PbO}+\mathrm{SO}_{2}$
8. $\mathrm{S}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}$
9. $\mathrm{S}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
10. $\mathrm{MnO}_{2}+\mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
11. $\mathrm{C}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}$
12. $\mathrm{KOH}+\mathrm{Cl}_{2} \rightarrow \mathrm{KCl}+\mathrm{KClO}+\mathrm{H}_{2} \mathrm{O}$
13. $\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{2}+\mathrm{HNO}_{3}$
14. $\mathrm{Pb}_{3} \mathrm{O}_{4}+\mathrm{HCl} \rightarrow \mathrm{PbCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
15. $\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2} \rightarrow \mathrm{HCl}+\mathrm{O}_{2}$
16. $\mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
17. $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{S}$
18. $\mathrm{P}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{3} \mathrm{PO}_{4}$
19. $\mathrm{Zn}+\mathrm{HNO}_{3} \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}$

Solution:
Balanced chemical equations:

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468

1. $3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$
2. $3 \mathrm{Ca}+\mathrm{N}_{2} \rightarrow \mathrm{Ca}_{3} \mathrm{~N}_{2}$
3. $\mathrm{Zn}+2 \mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2}$
4. $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
5. $3 \mathrm{PbO}+2 \mathrm{NH}_{3} \rightarrow 3 \mathrm{~Pb}+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$
6. $2 \mathrm{~Pb}_{3} \mathrm{O}_{4} \rightarrow 6 \mathrm{PbO}+\mathrm{O}_{2}$
7. $2 \mathrm{PbS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{PbO}+2 \mathrm{SO}_{2}$
8. $\mathrm{S}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 3 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
9. $\mathrm{S}+6 \mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+6 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
10. $\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
11. $\mathrm{C}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}$
12. $2 \mathrm{KOH}+\mathrm{Cl}_{2} \rightarrow \mathrm{KCl}+\mathrm{KClO}+\mathrm{H}_{2} \mathrm{O}$
13. $2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{2}+\mathrm{HNO}_{3}$
14. $\mathrm{Pb}_{3} \mathrm{O}_{4}+8 \mathrm{HCl} \rightarrow 3 \mathrm{PbCl}_{2}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
15. $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Cl}_{2} \rightarrow 4 \mathrm{HCl}+\mathrm{O}_{2}$
16. $2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
17. $2 \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{~S} \rightarrow 2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{S}$
18. $\mathrm{P}+5 \mathrm{HNO}_{3} \rightarrow 5 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{3} \mathrm{PO}_{4}$
19. $\mathrm{Zn}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2}$

Page No: 17

Question 1.
Fill in the blanks:

1. Dalton used symbol \qquad for oxygen \qquad for hydrogen.
2. Symbol represents \qquad atom(s) of an element.
3. Symbolic expression for a molecule is called \qquad . .
4. Sodium chloride has two radicals. Sodium is a \qquad radical while chloride is \qquad radical.
5. Valency of carbon in CH_{4} is \qquad , in $\mathrm{C}_{2} \mathrm{H}_{6}$ \qquad in $\mathrm{C}_{2} \mathrm{H}_{4}$ \qquad and in $\mathrm{C}_{2} \mathrm{H}_{2}$ is \qquad .

Student's Favourite Academy

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
6. Valency of Iron in FeCl_{2} is \qquad and in FeCl_{3} it is \qquad .
7. Formula of iron (ill) carbonate is \qquad .

Solution:

1. Dalton used symbol $[\mathrm{O}]$ for oxygen, $[\mathrm{H}]$ for hydrogen.
2. Symbol represents gram atom(s) of an element.
3. Symbolic expression for a molecule is called molecular formula.
4. Sodium chloride has two radicals. Sodium is a basic radical, while chloride is an acid radical.
5. Valency of carbon in CH_{4} is 4 , in $\mathrm{C}_{2} \mathrm{H}_{6} 4$, in $\mathrm{C}_{2} \mathrm{H}_{4} 4$ and in $\mathrm{C}_{2} \mathrm{H}_{2}$ is 4 .
6. Valency of iron in FeCl_{2} is 2 and in FeCl_{3} it is 3 .
7. Formula of iron (III) carbonate is $\mathrm{Fe}_{2}\left[\mathrm{CO}_{3}\right]_{3}$.

Question 2.
Complete the following table.

Acid Radicals	Chloride					
Batrate		Sulphate	Carbonate	Hydroxide	Phosphate	
Magnesium						
SgCl						
Sodium		$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	MgSO_{4}	MgCO_{3}	$\mathrm{Mg}(\mathrm{OH})_{2}$	$\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
Zinc						
Silver						
Ammonium						
Calcium						
Pron (II)						
Potassium						

Solution:

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com

Acid Radicals \rightarrow Basic Radicals \downarrow	Chloride	Nitrate	Sulphate	Carbonate	Hydroxide	Phosphate
Magnesium	MgCl_{2}	$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	MgSO_{4}	MgCO_{3}	$\mathrm{Mg}(\mathrm{OH})_{2}$	$\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
Sodium	NaCl	NaNO_{3}	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	NaOH	$\mathrm{Na}_{3} \mathrm{PO}_{4}$
Zinc	ZnCl_{2}	$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$	ZnSO_{4}	ZnCO_{3}	$\mathrm{Zn}[\mathrm{OH}]_{2}$	$\mathrm{Zn}_{3}\left[\mathrm{PO}_{4}\right)_{2}$
Silver	AgCl	AgNO_{3}	$\mathrm{Ag}_{2} \mathrm{SO}_{4}$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	AgOH	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$
Ammonium	$\mathrm{NH}_{4} \mathrm{Cl}$	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	$\begin{gathered} {\left[\mathrm{NH}_{4}\right]_{2}} \\ \mathrm{SO}_{4} \end{gathered}$	$\left[\mathrm{NH}_{4}\right]_{2} \mathrm{SO}_{4}$	NH 4 OH	$\left[\mathrm{NH}_{4}\right]_{3} \mathrm{PO}_{4}$
Calcium	CaCl_{2}	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	CaSO_{4}	CaCO_{3}	$\mathrm{Ca}[\mathrm{OH}]_{2}$	$\mathrm{Ca}_{3}\left[\mathrm{PO}_{4}\right]_{2}$
Iron (II)	FeCl_{2}	$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$	FeSO_{4}	FeCO_{3}	$\mathrm{Fe}[\mathrm{OH}]_{2}$	$\mathrm{Fe}_{3}\left[\mathrm{PO}_{4}\right]_{2}$
Potassium	KCl	KNO_{3}	$\mathrm{K}_{2} \mathrm{SO}_{4}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	KOH	$\mathrm{K}_{3} \mathrm{PO}_{4}$

Question 3.
Sodium chloride reacts with silver nitrate to produce silver chloride and sodium nitrate

1. Write the equation.
2. Check whether it is balanced, if not balance it.
3. Find the weights of reactants and products.
4. State the law which this equation satisfies.

Solution:
(a) $\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{AgCl} \downarrow$
(b) It is a balanced equation.
(c) Weights of reactants: $\mathrm{NaCl}-58.44, \mathrm{AgNO}_{3}-169.87$

Weights of products: $\mathrm{NaNO}_{3}-84.99, \mathrm{AgCl}-143.32$
$\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{AgCl}$
$(23+35.5)+(108+14+48) \rightarrow(23+14+48)+(108+35.5)$
$58.5+170 \rightarrow 85+143.5$
$228.5 \mathrm{~g} \rightarrow 228.5 \mathrm{~g}$

Student's Favourite Academy

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com
(d) Law of conservation of mass: Matter is neither created nor destroyed in the course of a chemical reaction.

Question 4(a).
What information does the following chemical equation convey? $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2}$ Solution:
(a) This equation conveys the following information:

1. The actual result of a chemical change.
2. Substances take part in a reaction, and substances are formed as a result of the reaction.
3. Here, one molecule of zinc and one molecule of sulphuric acid react to give one molecule of zinc sulphate and one molecule of hydrogen.
4. Composition of respective molecules, i.e. one molecule of sulphuric acid contains two atoms of hydrogen, one atom of sulphur and four atoms of oxygen.
5. Relative molecular masses of different substances, i.e. molecular mass of

$$
\begin{aligned}
& \mathrm{Zn}=65 \\
& \mathrm{H}_{2} \mathrm{SO}_{4}=(2+32+64)=98 \\
& \mathrm{nSO}_{4}=(65+32+64)=161 \\
& \mathrm{H}_{2}=2
\end{aligned}
$$

6. 22.4 litres of hydrogen are formed at STP.

Question 4(b).
What information do the following chemical equations convey? $\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
Solution:
(b) This equation conveys the following information:

1. Magnesium reacts with hydrochloric acid to form magnesium chloride and hydrogen gas.
2. 24 g of magnesium reacts with $2(1+35.5)=73 \mathrm{~g}$ of hydrochloric acid to produce $(24+71)$, i.e. 95 g of magnesium chloride.
3. Hydrogen produced at STP is 22.4 litres.

Question 5(a).
What are polyatomic ions? Give two examples.
Solution:
(a) A poly-atomic ion is a charged ion composed of two or more atoms covalently bounded that can be carbonate $\left(\mathrm{CO}_{3}{ }^{2-1}\right.$ and sulphate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$

Question 5(b).
Name the fundamental law that is involved in every equation.
Solution:
(b) The fundamental laws which are involved in every equation are:

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy @ gmail.com

1. A chemical equation consists of formulae of reactants connected by plus sign (+) and arrow (\rightarrow) followed by the formulae of products connected by plus sign (+).
2. The sign of an arrow (\rightarrow) is to read 'to form'. It also shows the direction in which reaction is predominant.

Question 6(a).
What is the valency of : fluorine in CaF_{2}
Solution:
(a) Valency of fluorine in CaF_{2} is -1 .

Question 6(b).
What is the valency of :
sulphur in SF_{6}
Solution:
(b) Valency of sulphur in SF_{6} is -6.

Question 6(c).
What is the valency of :
phosphorus in PH_{3}
Solution:
(c) Valency of phosphorus in PH_{3} is +3 .

Question 6(d).
What is the valency of : carbon in CH_{4}
Solution:
(d) Valency of carbon in CH_{4} is +4 .

Question 6(e).
What is the valency of :
nitrogen in the following compounds:
(i) $\mathrm{N}_{2} \mathrm{O}_{3}$ (ii) $\mathrm{N}_{2} \mathrm{O}_{5}$ (iii) NO_{2} (iv) NO

Solution:
(e) Valency of nitrogen in the given compounds:

1. $\mathrm{N}_{2} \mathrm{O}_{3}=\mathrm{N}$ is +3
2. $\mathrm{N}_{2} \mathrm{O}_{5}=\mathrm{N}$ is +5
3. $\mathrm{NO}_{2}=\mathrm{N}$ is +4
4. $\mathrm{NO}=\mathrm{N}$ is +2

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com

Question 7.

Why should an equation be balanced? Explain with the help of a simple equation.
Solution:
According to law of conservation of mass, "matter can neither be created nor be destroyed in a chemical reaction". This is possible only, if total number of atoms on the reactants side is equals to total number of atoms on products side. Thus, a chemical reaction should be always balanced.
Let us consider an example,
$\mathrm{Fe}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2}$
In this equation number of atoms on both sides is not the same, the equation is not balanced.
The balanced form of this equation is given by,
$3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$
Question 8(a).
Write the balanced chemical equations of the following reactions. sodium hydroxide + sulphuric acid \rightarrow sodium sulphate + water
Solution:
$2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
Question 8(b).
Write the balanced chemical equations of the following reactions. potassium
bicarbonate + sulphuric acid \rightarrow potassium sulphate + carbon dioxide + water
Solution:
$2 \mathrm{KHCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Question 8(c).
Write the balanced chemical equations of the following reactions. iron + sulphuric acid \rightarrow
ferrous sulphate + hydrogen.
Solution:
$\mathrm{Fe}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{H}_{2}$
Question 8(d).
Write the balanced chemical equations of the following reactions. chlorine + sulphur dioxide + water
\rightarrow sulphuric acid + hydrogen chloride

Solution:

$\mathrm{Cl}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$
Question 8(e).
Write the balanced chemical equations of the following reactions. silver nitrate \rightarrow silver + nitrogen
dioxide + oxygen"
Solution:
$2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{Ag}+2 \mathrm{NO}_{2}+\mathrm{O}_{2}$
Question 8(f).
Write the balanced chemical equations of the following reactions.

Student's Favourite Academy

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com
copper + nitric acid \rightarrow copper nitrate + nitric oxide + water
Solution:
$3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}$
Question 8(g).
Write the balanced chemical equations of the following reactions.
ammonia + oxygen \rightarrow nitric oxide + water
Solution:

$$
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \xrightarrow{\mathrm{Pt} .800} 6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{NO} \uparrow+\text { Heat }
$$

Question 8(h).
Write the balanced chemical equations of the following reactions.
barium chloride + sulphuric acid \rightarrow barium sulphate + hydrochloric acid
Solution:
$\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{HCl}$
Question 8(i).
Write the balanced chemical equations of the following reactions.
zinc sulphide + oxygen \rightarrow zinc oxide + sulphur dioxide
Solution:
$2 \mathrm{ZnS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO}+2 \mathrm{SO}_{2}$
Question 8(j).
Write the balanced chemical equations of the following reactions.
aluminium carbide + water \rightarrow aluminium hydroxide + methane

Solution:

$\mathrm{Al}_{4} \mathrm{C}_{3}+12 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{CH}_{4}$
Question 8(k).
Write the balanced chemical equations of the following reactions.
iron pyrites $\left(\mathrm{FeS}_{2}\right)+$ oxygen \rightarrow ferric oxide + sulphur dioxide
Solution:
$4 \mathrm{FeS}_{2}+11 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{SO}_{2}$
Question 8(I).
Write the balanced chemical equations of the following reactions.
potassium permanganate + hydrochloric acid \rightarrow potassium chloride + manganese
chloride + chlorine + water
Solution:
$2 \mathrm{KMnO}_{4}+\mathrm{HCl} \rightarrow 2 \mathrm{KCl}+2 \mathrm{MnCl}_{2}+5 \mathrm{Cl}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
Question 8(m).
Write the balanced chemical equations of the following reactions.
aluminium sulphate + sodium hydroxide \rightarrow sodium sulphate + sodium meta aluminate + water.

Student's Favourite Academy

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com
Solution:
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+8 \mathrm{NaOH} \rightarrow 3 \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{NaAlO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
Question 8(n).
Write the balanced chemical equations of the following reactions.
aluminium + sodium hydroxide + water \rightarrow sodium meta aluminate + hydrogen
Solution:
$2 \mathrm{Al}+2 \mathrm{NaOH}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaAlO}_{2}+3 \mathrm{H}_{2}$
Question 8(o).
Write the balanced chemical equations of the following reactions.
potassium dichromate + sulphuric acid \rightarrow potassium sulphate + chromium sulphate + water + oxygen.
Solution:
$2 \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+8 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{O}_{2}$
Question 8(p).
Write the balanced chemical equations of the following reactions.
potassium dichromate + hydrochloric acid \rightarrow Potassium chloride + chromium chloride + water + chlorine Solution:
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+14 \mathrm{HCl} \rightarrow 2 \mathrm{KCl}+2 \mathrm{CrCl}_{3}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Cl}_{2}$
Question 8(q).
Write the balanced chemical equations of the following reactions.
sulphur + nitric acid \rightarrow sulphuric acid + nitrogen dioxide + water.
Solution:
$\mathrm{S}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Question 8(r).
Write the balanced chemical equations of the following reactions. sodium chloride + manganese dioxide + sulphuric acid \rightarrow sodium
hydrogen sulphate + manganese sulphate + water + chlorine.
Solution:
$2 \mathrm{NaCl}+\mathrm{MnO}_{2}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{NaHSO}_{4}+\mathrm{MnSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
Question 9(a).
Define atomic mass unit.
Solution:
Atomic mass unit (amu) is equal to one-twelfth the mass of an atom of carbon-12 (atomic mass of carbon taken as 12).

Question 9(b)(ii)
Calculate the molecular mass of the following:
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
Given atomic mass of $\mathrm{Cu}=63 \cdot 5, \mathrm{H}=1, \mathrm{O}=16, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{Mg}=24, \mathrm{~S}=32$
Solution:

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com
Molecular mass of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
$=(2 \times 14)+(8 \times 1)+12+(3 \times 16)$
$=28+8+12+48$
= 96
Question 9(b)(iii)
Calculate the molecular mass of the following:
$\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
Given atomic mass of $\mathrm{Cu}=63 \cdot 5, \mathrm{H}=1, \mathrm{O}=16, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{Mg}=24, \mathrm{~S}=32$
Solution:
Molecular mass of $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
$=(14 \times 2)+(4 \times 1)+12+16$
$=28+4+12+16$
$=60$
Question 9(b)(iv)
Calculate the molecular mass of the following:
$\mathrm{Mg}_{3} \mathrm{~N}_{2}$
Given atomic mass of $\mathrm{Cu}=63 \cdot 5, \mathrm{H}=1, \mathrm{O}=16, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{Mg}=24, \mathrm{~S}=32$
Solution:
Molecular mass of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$
$=(3 \times 24)+(2 \times 14)$
$=72+28$
$=100$

Question 10(a).
Choose the correct answer from the options given below.
Modern atomic symbols are based on the method proposed by
i. Bohr
ii. Dalton
iii. Berzelius
iv. Alchemist

Solution:
iii. Berzelius

Question 10(b).
Choose the correct answer from the options given below.
The number of carbon atoms in a hydrogen carbonate radical is
i. One
ii. Two
iii. Three
iv. Four

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com
Solution:
One
Question 10(c).
Choose the correct answer from the options given below.
The formula of iron (III) sulphate is
i. $\mathrm{Fe}_{3} \mathrm{SO}_{4}$
ii. $\mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{3}$
iii. $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
iv. FeSO_{4}

Solution:
iii. $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Question 10(d).
Choose the correct answer from the options given below.
In water, the hydrogen-to-oxygen mass ratio is
i. $1: 8$
ii. 1: 16
iii. 1: 32
iv. 1: 64

Solution:
i. 1:8

Question 10(e).
Choose the correct answer from the options given below.
The formula of sodium carbonate is $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and that of calcium hydrogen carbonate is
i. CaHCO_{3}
ii. $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
iii. $\mathrm{Ca}_{2} \mathrm{HCO}_{3}$
iv. $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{3}$

Solution:
i. $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$

Solution 11.
(a) A molecular formula represent The Molecule of an element or of a Compound.
(b) The molecular formula of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ represents 18 parts by mass of water.
(c) A balanced equation obeys the law of conservation of mass wherever unbalanced equation does not obey this law.
(d) CO and Co represent carbon-monoxide and cobalt respectively.

Solution 12.

1. Relative molecular mass of CHCl 3

$$
=12+1+(3 \times 35.5)
$$

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com
$=12+1+106.5$
$=119.5$
2. Relative molecular mass of (NH4) 2 Cr 2 O 7

$$
\begin{aligned}
& =(14 \times 2)+(1 \times 8)+(52 \times 2)+(16 \times 7) \\
& =28+8+104+112 \\
& =252
\end{aligned}
$$

3. Relative molecular mass of CuSO4. 5 H 2 O

$$
\begin{aligned}
& =63.5+32+(16 \times 4)+5(2+16) \\
& =159.5+90 \\
& =249.5
\end{aligned}
$$

4. Relative molecular mass of (NH4)2SO4
$=(2 \times 14)+(8 \times 1)+32+(4 \times 16)$
$=28+8+32+64$
$=132$
5. Relative molecular mass of CH 3 COONa

$$
\begin{aligned}
& =(12 \times 2)+(1 \times 3)+(16 \times 2)+23 \\
& =24+3+32+23 \\
& =82
\end{aligned}
$$

6. Potassium chlorate $(\mathrm{KClO} 3)$

$$
\begin{aligned}
& =39.1+35.5+(16 \times 3) \\
& =39.1+35.5+48 \\
& =122.6
\end{aligned}
$$

7. Ammonium chloroplatinate $(\mathrm{NH} 4) 2 \mathrm{PtCl} 6$

$$
\begin{aligned}
& =(14 \times 2)+(1 \times 8)+195.08+(35.5 \times 6) \\
& =28+8+195.08+213 \\
& =444.08
\end{aligned}
$$

Solution 13.

Compound	Empirical formula
(a) Benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$	CH
CompoundEmpirical formula (b) Glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$	$\mathrm{CH}_{2} \mathrm{O}$
CompoundEmpirical formula (c) Acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$	CH

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com
CompoundEmpirical formula
(d) Acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$

$\mathrm{CH}_{2} \mathrm{O}$

Solution 14.
Relative molecular mass of $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& =24+32+(16 \times 4)+7(2+16) \\
& =24+32+64+126 \\
& =246
\end{aligned}
$$

26 g of Epsom salt contains 126 g of water of crystallisation.
Hence, 100 g of Epsom salt contains

$$
\begin{aligned}
& \frac{100 \times 126}{246} \\
& =51.2
\end{aligned}
$$

The \% of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}=51.2$
Solution 15.
(a) Relative molecular mass of $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$
$=40.07+(1 \times 4)+(30.9 \times 2)+(16 \times 8)$
$=40.07+4+61.8+128$
$=233.87$
$233.87 \mathrm{~g} \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ contains 61.8 g P
So, $100 \mathrm{~g} \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ contains

$$
\frac{100 \times 61.8}{233.87}=26.42 \mathrm{~g}
$$

The \% of P in $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ is 26.42%.
(b) Relative molecular mass of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
$=(40.07 \times 3)+(30.9 \times 2)+(16 \times 8)$
$=120.21+61.8+128$
$=310.01$
$310.01 \mathrm{~g} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ contains 61.8 g P
So, $100 \mathrm{~g} \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ contains
(IMAGE)
The \% of P in $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ is 19.93%.
Solution 16.
Relative molecular mass of KClO_{3}
$=39.09+35.5+(3 \times 16)$
$=122.59 \mathrm{~g}$

Student's Favourite Academy
Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai - 400101 Phone : 8828132765, 9833035468
Email : favouriteacademy@gmail.com
$122.59 \mathrm{~g} \mathrm{KClO}_{3}$ contains 39.09 g K Hence, $100 \mathrm{~g} \mathrm{KClO}_{3}$ contains

$$
=\frac{100 \times 39.09}{122.59}=31.9 \mathrm{~g}
$$

$122.59 \mathrm{~g} \mathrm{KClO}_{3}$ contains 35.5 g Cl
Hence, $100 \mathrm{~g} \mathrm{KClO}_{3}$ contains
$=\frac{100 \times 35.5}{122.59}=28.9 \mathrm{~g}$
$122.59 \mathrm{~g} \mathrm{KClO}_{3}$ contains 48 g O
Hence, $100 \mathrm{~g} \mathrm{KClO}_{3}$ contains
$=\frac{100 \times 48}{122.59}=39.1 \mathrm{~g}$
The percentages of K, Cl and O in KClO_{3} are $31.9 \%, 28.9 \%$ and 39.1%, respectively.
Solution 17.
Relative molecular mass of urea is

Element	No. of atoms	Atomic mass	Total
N	2	14	28
C	1	12	12
H	4	1	4
O	1	16	16

$[12+16+28+4]=60$
Hence, relative molecular mass of urea $=60$

$$
\begin{aligned}
\text { Percentage of carbon } & =\frac{\text { Wt of carbon }}{\text { Total wt of urea }} \times 100=\frac{12}{60} \times 100 \\
& =20 \text { or } 20 \%
\end{aligned}
$$

