

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Selina ICSE Solutions for Class 9 Chemistry Chapter 4 The Language of Chemistry

Page No: 8

Question 1.

What is a symbol? What information does it convey?

Solution:

A symbol is the short form which stands for the atom of a specific element or the abbreviations used for the names of elements.

- 1. It represents a specific element.
- 2. It represents one atom of an element.
- 3. A symbol represents how many atoms are present in its one gram (gm) atom.
- 4. It represents the number of times an atom is heavier than one atomic mass unit (amu) taken as a standard.

Ouestion 2

Why is the symbol S for sulphur, but Na for sodium and Si for silicon?

Solution:

In most cases, the first letter of the name of the element is taken as the symbol for that element and written in capitals (e.g. for sulphur, we use the symbol S). In cases where the first letter has already been adopted, we use a symbol derived from the Latin name (e.g. for sodium/Natrium, we use the symbol Na). In some cases, we use the initial letter in capital together with a small letter from its name (e.g. for silicon, we use the symbol Si).

Question 3.

Write the full form of IUPAC. Name the elements represented by the following symbols: Au, Pb, Sn, Hg

Solution:

The full form of IUPAC is International Union of Pure and Applied Chemistry.

Names of the elements:

Au – Gold

Pb - Lead

Sn - Tin

Hg – Mercury

Question 4.

If the symbol for Cobalt, Co, were written as CO, what would be wrong with it? Solution:

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Co stands for Cobalt. If we write CO, then it would mean that it is a compound containing two non-metal ions, i.e. carbon and oxygen, which forms carbon monoxide gas.

Question 5(d).

 $2H_2$

Solution:

- (a) H stands for one atom of hydrogen.
- (b) H₂ stands for one molecule of hydrogen.
- (c) 2H stands for two atoms of hydrogen.

Ouestion 6.

What is meant by atomicity? Name the diatomic element.

Solution:

The number of atoms of an element that join together to form a molecule of that element is known as its atomicity. Diatomic molecules: H_2 , O_2 , N_2 , Cl_2 Question 7(a).

Explain the terms 'valency' and 'variable valency'.

Solution:

- 1. Valency of Na is +1 because it can lose one electron.
- 2. Valency of O is -2 because it can accept two electrons.

Variable valency: It is the combining capacity of an element in which the metal loses more electrons from a shell next to a valence shell in addition to electrons of the valence shell.

Question 7(b).

How are the elements with variable valency named? Explain with an example.

Solution:

If an element exhibits two different positive valencies, then

- 1. for the lower valency, use the suffix -OUS at the end of the name of the metal
- 2. for the higher valency, use the suffix -IC at the end of the name of the metal.

Example:

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Element Lower valency Higher valency				
Lower valency	Higher valency			
•				
Ferrous (Fe2+)	Ferric (Fe³+)			
1 611 646 (1 6)	1 61116 (1 6)			
	Lower valency Ferrous (Fe ²⁺)			

Question 8.

Give the formula and valency of:

1.	aluminate		
----	-----------	--	--

- 2. chromate
- 3. aluminium
- 4. cupric

	Name	Formula	Valency
a.	Aluminate	AIO ₂	-2
b.	Chromate	CrO₄	-2
C.	Aluminium	Al	+3
d.	Cupric	Cu	+2

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Question 9.b

What is the significance of formula?

Solution:

Chemical formula: The chemical formula of a substance (element or compound) is a symbolic representation of the actual number of atoms present in one molecule of that substance.

It also indicates the fixed proportion by weight in which atoms combine.

Rules:

- (i) The positive and negative radicals are written side by side (+ve first) with their charge as a superscript on the right side.
- (ii) Charges are then interchanged and written as a subscript.
- (iii) The final formula is written without the sign of charge, e.g. Hg₂O

Question 10(a).

What do you understand by the following terms?

Acid radical

Solution:

Acid radical: The electronegative or negatively charged radical is called an acid radical.

Examples: Cl-, O2-

Question 10(b).

What do you understand by the following terms? Basic radical

Solution:

Basic radical: The electropositive or positively charged radical is called a basic radical.

Examples: K+, Na+ Question 11.

Match the following:

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

	: favouriteacademy@gmail.com
Compound	Formula
(a) Boric acid	i. NaOH
(b) Phosphoric acid	ii. SiO ₂
(c) Nitrous acid	iii. Na₂CO₃
(d) Nitric acid	iv. KOH
(e) Sulphurous acid	v. CaCO₃
(f) Sulphuric acid	vi. NaHCO₃
(g) Hydrochloric acid	vii. H ₂ S
(h) Silica (sand)	viii. H₂O

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

(i) Caustic soda (sodium hydroxide)	ix. PH₃
(j) Caustic potash (potassium hydroxide)	x. CH ₄
(k) Washing soda(sodium carbonate)	xi. NH₃
(I) Baking soda(sodium bicarbonate)	xii. HCl
(m) Lime stone.(calcium carbonate)	xiii. H ₂ SO ₃
(n) Water	xiv. HNO ₃
(o) Hydrogen sulphide	xv. HNO ₂
(p) Ammonia	xvi. H₃BO₃
(q) Phosphine	xvii. H₃PO₄

xiii. H₂SO₃

xviii. H₂SO₄

xii. HCl

	91	uueni s favourile Acauemy	
Shop No. 5, "Umang" Vasant Utsav C H S Lt	td., Thakur Village, Kandivali E, Email: favouriteacademy@gr	, Mumbai – 400 101 Phone : 8828132765, 9833035468 nail.com	
(r) Methane		xviii. H₂SO₄	
Solution:			
Compound	d	Formula (Ans)	
(a) Boric ac	id	xvi. H ₃ BO ₃	
(b) Phosphoric	acid	xvii. H₃PO₄	
(c) Nitrous a	cid	xv. HNO ₂	
(d) Nitric ac	sid	xiv. HNO₃	

(e) Sulphurous acid

(f) Sulphuric acid

(g) (a) Hydrochloric acid

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Email: favouriteacademy@gmail	.com
(h) Silica (sand)	ii. SiO ₂
(i) Caustic soda (sodium hydroxide)	i. NaOH
(j) Caustic potash (potassium hydroxide)	iv. KOH
(k) Washing soda (sodium carbonate)	iii. Na₂CO₃
(I) Baking soda (sodium bicarbonate)	vi. NaHCO₃
(m) Lime stone (calcium carbonate)	v. CaCO₃
(n) Water (o) Hydrogen sulphide	viii. H₂O vii. H₂S
(p) Ammonia	xi. NH₃
(q) Phosphine	ix. PH₃
(r) Methane	x. CH₄

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Question 12.

Select the basic and acidic radicals in the following compounds.

- 1. MgSO₄
- 2. (NH₄)₂SO₄
- 3. $Al_2(SO_4)_3$
- 4. ZnCO₃
- 5. Mg(OH)₂

Solution:

	Acidic radical	Basic radical
MgSO₄	SO ₄ -	Mg⁺
(NH ₄) ₂ SO ₄	SO ₄ -	NH ₄ +
Al ₂ (SO ₄) ₃	SO ₄ -	Al³+
ZnCO₃	CO₃-	Zn ²⁺
Mg(OH) ₂	OH-	Mg ²⁺

Question 13.

Write chemical formula of the sulphate of Aluminium, Ammonium and ${\sf Zinc.}$

Solution:

Valencies of aluminium, ammonium and zinc are 3, 1 and 2, respectively. The valency of sulphate is 2.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Hence, chemical formulae of the sulphates of aluminium, ammonium and zinc are $Al_2(SO_4)_3$, $(NH_4)_2SO_4$ and $ZnSO_4$.

Question 14.

The valency of an element A is 3 and that of element B is 2. Write the formula of the compound formed by the combination of A and B

Solution:

Formula of the compound = A_2B_3

Ouestion 15.

Write the chemical names of the following compounds:

- 1. $Ca_3(PO_4)_2$
- 2. K₂CO₃
- 3. K₂MnO₄
- 4. Mn₃(BO₃)₂
- 5. Mg(HCO₃)₂
- 6. Na₄Fe(CN)₆
- 7. Ba(ClO₃)₂
- 8. Aq₂SO₃
- 9. (CH₃COO)₂Pb
- 10. Na₂SiO₃

Solution:

Chemical names of compounds:

- 1. Ca₃(PO₄)₂ Calcium phosphate
- 2. K₂CO₃ Potassium carbonate
- 3. K₂MnO₄ Potassium manganate
- 4. Mn₃(BO₃)₂ Manganese (II) borate
- 5. Mg(HCO₃)₂ Magnesium hydrogen carbonate
- 6. Na₄Fe(CN)₆ Sodium ferrocyanide
- 7. Ba(ClO₃)₂ Barium chlorate
- 8. Ag₂SO₃ − Silver sulphite
- 9. (CH₃COO)₂Pb Lead acetate
- 10. Na₂SiO₃ Sodium silicate

Question 16

Write the basic radicals and acidic radicals of the following and then write the chemical formulae of these compounds.

- 1. Barium sulphate
- 2. Bismuth nitrate

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

- 3. Calcium bromide
- 4. Ferrous sulphide
- 5. Chromium sulphate
- 6. Calcium silicate
- 7. Potassium ferrocyanide
- 8. Stannic oxide
- 9. Magnesium phosphate
- 10. Sodium zincate
- 11. Stannic phosphate
- 12. Sodium thiosulphate
- 13. Potassium manganate
- 14. Nickel bisulphate

Compounds	Acidic	Basic	Chemical
Compounds	radical	radical	formulae
Barium sulphate	SO ₄ ² ·	Ba ²⁺	BaSO₄
Bismuth nitrate	NO₃-	Bi³+	Bi(NO₃)₃
Calcium bromide	Br-	Ca ²⁺	CaBr₂
Ferrous sulphide	S ²⁻	Fe ²⁺	FeS

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

	1 : favouriteacademy@gmail.com		
Chromium sulphate	SO ₄ 2-	Cr³+	Cr ₂ (SO ₄) ₃
Calcium silicate	SiO ₄ 2-	Ca ²⁺	Ca₂SiO₄
Potassium ferrocyanide	[Fe(CN) ₆] ⁴⁻	K1+	K₄[Fe(CN)₅]
Stannic oxide	O ₂ -	Sn ²⁺	SnO ₂
Magnesium phosphate	(PO ₄) ³⁻	Mg ²⁺	Mg ₃ (PO ₄) ₂
Sodium zincate	ZnO ²⁻	Na¹+	Na ₂ ZnO ₂
Stannic phosphate	(PO ₄) ³⁻	Sn ⁴⁺	Sn ₃ (PO ₄) ₄
Sodium thiosulphate	(S ₂ O ₃) ²⁻	Na¹+	Na ₂ S ₂ O ₃
Potassium manganate	MnO ₄ 2-	K1+	K₂MnO₄

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

	, J - B		
Nickel bisulphate	HSO ₄ 1-	Ni³+	Ni(HSO₄)₃

Ouestion 16.

Give the names of the following compounds.

- 1. NaClO
- 2. NaClO₂
- 3. NaClO₃
- 4. NaClO₄

Solution:

- 1. NaClO Sodium hypochlorite
- 2. NaClO₂ Sodium chlorite
- 3. NaClO₃ Sodium chlorate
- 4. NaClO₄ Sodium perchlorate

Question 18(a).

Complete the following statements by selecting the correct option:

The formula of a compound represents

i. an atom

ii. a particle

iii. a molecule

iv. a combination

Solution:

iii. The formula of a compound represents a molecule.

Question 18(b).

Complete the following statements by selecting the correct option:

The correct formula of aluminium oxide is

i. AlO₃

ii. AlO₂

iii. Al_2O_3

Solution:

iii. The correct formula of aluminium oxide is Al₂O₃.

Question 18(c).

Complete the following statements by selecting the correct option:

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone: 8828132765, 9833035468
Email: favouriteacademy@gmail.com

The valency of nitrogen in nitrogen dioxide (NO₂) is

i. one

ii. two

iii. three

iv. four

Solution:

iv. The valency of nitrogen in nitrogen dioxide (NO2) is four.

Page No: 13

Ouestion 1.

Balance the following equations:

- 1. Fe + $H_2O \rightarrow Fe_3O_4 + H_2$
- 2. Ca + $N_2 \rightarrow Ca_3N_2$
- 3. $Zn + KOH \rightarrow K_2ZnO_2 + H_2$
- 4. $Fe_2O_3 + CO \rightarrow Fe + CO_2$
- 5. $PbO + NH_3 \rightarrow Pb + H_2O + N_2$
- 6. $Pb_3O_4 \rightarrow PbO + O_2$
- 7. PbS + $O_2 \rightarrow PbO + SO_2$
- 8. $S + H_2SO_4 \rightarrow SO_2 + H_2O$
- 9. $S + HNO_3 \rightarrow H_2SO_4 + NO_2 + H_2O$
- 10. $MnO_2 + HCI \rightarrow MnCl_2 + H_2O + Cl_2$
- $11.C + H_2SO_4 \rightarrow CO_2 + H_2O + SO_2$
- 12. KOH + Cl₂ \rightarrow KCl + KClO + H₂O
- 13. $NO_2 + H_2O \rightarrow HNO_2 + HNO_3$
- 14. $Pb_3O_4 + HCI \rightarrow PbCl_2 + H_2O + Cl_2$
- 15. $H_2O + Cl_2 \rightarrow HCl + O_2$
- 16. NaHCO₃ \rightarrow Na₂CO₃ + H₂O + CO₂
- $17. HNO_3 + H_2S \rightarrow NO_2 + H_2O + S$
- $18.P + HNO_3 \rightarrow NO_2 + H_2O + H_3PO_4$
- 19. $Zn + HNO_3 \rightarrow Zn(NO_3)_2 + H_2O + NO_2$

Solution:

Balanced chemical equations:

- 1. $3\text{Fe} + 4\text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + 4\text{H}_2$
- 2. $3Ca + N_2 \rightarrow Ca_3N_2$
- 3. $Zn + 2KOH \rightarrow K_2ZnO_2 + H_2$
- 4. $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
- 5. $3PbO + 2NH_3 \rightarrow 3Pb + 3H_2O + N_2$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

- 6. $2Pb_3O_4 \rightarrow 6PbO + O_2$
- 7. $2PbS + 3O_2 \rightarrow 2PbO + 2SO_2$
- 8. $S + 2H_2SO_4 \rightarrow 3SO_2 + 2H_2O$
- 9. $S + 6HNO_3 \rightarrow H_2SO_4 + 6NO_2 + 2H_2O$
- 10. $MnO_2 + 4HCI \rightarrow MnCl_2 + 2H_2O + Cl_2$
- $11.C + 2H_2SO_4 \rightarrow CO_2 + H_2O + SO_2$
- 12. 2KOH + $Cl_2 \rightarrow KCl + KClO + H_2O$
- $13.2NO_2 + H_2O \rightarrow HNO_2 + HNO_3$
- $14. Pb_3O_4 + 8HCI \rightarrow 3PbCl_2 + 4H_2O + Cl_2$
- $15.2H_2O + 2CI_2 \rightarrow 4HCI + O_2$
- 16. $2NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2$
- $17.2HNO_3 + H_2S \rightarrow 2NO_2 + 2H_2O + S$
- $18.P + 5HNO_3 \rightarrow 5NO_2 + H_2O + H_3PO_4$
- 19. $Zn + 4HNO_3 \rightarrow Zn(NO_3)_2 + 2H_2O + 2NO_2$

Page No: 17

Question 1. Fill in the blanks:

1.	Dalton used symbol.	for oxygen	for hydrogen.

- 2. Symbol represents ____ atom(s) of an element.
- 3. Symbolic expression for a molecule is called _____. .
- 4. Sodium chloride has two radicals. Sodium is a _____ radical while chloride is _____ radical.
- 5. Valency of carbon in CH_4 is _____, in C_2H_6 ____, in C_2H_4 ___ and in C_2H_2 is
- 6. Valency of Iron in FeCl₂ is _____ and in FeCl₃ it is ____.
- 7. Formula of iron (ill) carbonate is _____.

- 1. Dalton used symbol [O] for oxygen,[H] for hydrogen.
- 2. Symbol represents gram atom(s) of an element.
- 3. Symbolic expression for a molecule is called molecular formula.
- 4. Sodium chloride has two radicals. Sodium is a basic radical, while chloride is an acid radical.
- 5. Valency of carbon in CH₄ is 4, in C₂H₆4, in C₂H₄4 and in C₂H₂ is 4.
- 6. Valency of iron in FeCl₂ is 2 and in FeCl₃ it is 3.
- 7. Formula of iron (III) carbonate is Fe₂[CO₃]₃.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Question 2.

Complete the following table.

Acid Radicals	Chloride	Nitrate	Sulphate	Carbonate	Hydroxide	Phosphate
Basic Radicals						
Magnesium	MgCl ₂	Mg(NO ₃) ₂	MgSO ₄	MgCO₃	Mg(OH) ₂	Mg ₃ (PO ₄) ₂
Sodium						
Zinc						
Silver						
Ammonium						
Calcium						
Iron (II)						
Potassium						
L	L	<u> </u>	1	l .	I	l .

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Acid Radicals → Basic Radicals ↓	Chloride	Nitrate	Sulphate	Carbonate	Hydroxide	Phosphate
Magnesium	MgCl ₂	Mg(NO ₃) ₂	MgSO ₄	MgCO ₃	Mg(OH) ₂	Mg ₃ (PO ₄) ₂
Sodium	NaCl	NaNO 3	Na ₂ SO ₄	Na ₂ CO ₃	NaOH	Na ₃ PO ₄
Zinc	ZnCl ₂	Zn (NO ₃) ₂	ZnSO ₄	ZnCO ₃	Zn[OH] ₂	Zn ₃ [PO ₄) ₂
Silver	AgCl	AgNO ₃	Ag ₂ SO ₄	Ag ₂ CO ₃	AgOH	Ag ₃ PO ₄
Ammonium	NH ₄ CI	NH ₄ NO ₃	[NH ₄] ₂ SO ₄	[NH ₄] ₂ SO ₄	NH4OH	[NH ₄] ₃ PO ₄
Calcium	CaCl ₂	Ca(NO ₃) ₂	CaSO ₄	CaCO ₃	Ca[OH] ₂	Ca ₃ [PO ₄] ₂
Iron (II)	FeCl ₂	Fe(NO ₃) ₂	FeSO ₄	FeCO ₃	Fe[OH] ₂	Fe ₃ [PO ₄] ₂
Potassium	KCI	KNO ₃	K ₂ SO ₄	K ₂ CO ₃	КОН	K ₃ PO ₄

Question 3.

Sodium chloride reacts with silver nitrate to produce silver chloride and sodium nitrate

- 1. Write the equation.
- 2. Check whether it is balanced, if not balance it.
- 3. Find the weights of reactants and products.
- 4. State the law which this equation satisfies.

Solution:

- (a) NaCl+ AgNO₃ → NaNO₃ + AgCl↓
- (b) It is a balanced equation.
- (c) Weights of reactants:NaCl 58.44, AgNO $_3$ 169.87 Weights of products: NaNO $_3$ 84.99, AgCl 143.32

NaCl + AgNO₃ → NaNO₃ + AgCl

 $(23+35.5) + (108+14+48) \rightarrow (23+14+48) + (108+35.5)$

 $58.5 + 170 \rightarrow 85 + 143.5$

 $228.5 \, q \rightarrow 228.5 \, q$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

(d) Law of conservation of mass: Matter is neither created nor destroyed in the course of a chemical reaction.

Question 4(a).

What information does the following chemical equation convey? Zn + $H_2SO_4 \rightarrow ZnSO_4 + H_2$

Solution:

- (a) This equation conveys the following information:
 - 1. The actual result of a chemical change.
 - 2. Substances take part in a reaction, and substances are formed as a result of the reaction.
 - 3. Here, one molecule of zinc and one molecule of sulphuric acid react to give one molecule of zinc sulphate and one molecule of hydrogen.
 - 4. Composition of respective molecules, i.e. one molecule of sulphuric acid contains two atoms of hydrogen, one atom of sulphur and four atoms of oxygen.
 - 5. Relative molecular masses of different substances, i.e. molecular mass of Zn = 65

$$H_2SO_4 = (2+32+64) = 98$$

 $ZnSO_4 = (65+32+64) = 161$
 $H_2 = 2$

6. 22.4 litres of hydrogen are formed at STP.

Question 4(b).

What information do the following chemical equations convey? Mg + 2HCl \rightarrow MgCl₂+ H₂ Solution:

- (b) This equation conveys the following information:
 - Magnesium reacts with hydrochloric acid to form magnesium chloride and hydrogen gas.
 - 2. 24 g of magnesium reacts with 2(1 + 35.5) = 73 g of hydrochloric acid to produce (24 + 71), i.e. 95 g of magnesium chloride.
 - 3. Hydrogen produced at STP is 22.4 litres.

Question 5(a).

What are polyatomic ions? Give two examples.

Solution:

(a) A poly-atomic ion is a charged ion composed of two or more atoms covalently bounded that can be carbonate (CO_3^{2-}) and sulphate (SO_4^{2-}) Question 5(b).

Name the fundamental law that is involved in every equation.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution:

- (b) The fundamental laws which are involved in every equation are:
 - A chemical equation consists of formulae of reactants connected by plus sign (+) and arrow (→) followed by the formulae of products connected by plus sign (+).
 - 2. The sign of an arrow (\rightarrow) is to read 'to form'. It also shows the direction in which reaction is predominant.

Question 6(a).

What is the valency of: fluorine in CaF₂

Solution:

(a) Valency of fluorine in CaF₂ is -1.

Question 6(b).

What is the valency of:

sulphur in SF₆

Solution:

(b) Valency of sulphur in SF_6 is -6. Question 6(c).

What is the valency of:

phosphorus in PH₃

Solution:

(c) Valency of phosphorus in PH₃ is +3.

Question 6(d).

What is the valency of : carbon in CH4

Solution:

(d) Valency of carbon in CH₄ is +4.

Question 6(e).

What is the valency of:

nitrogen in the following compounds:

(i) N_2O_3 (ii) N_2O_5 (iii) NO_2 (iv) NO

- (e) Valency of nitrogen in the given compounds:
 - 1. $N_2O_3 = N \text{ is } +3$
 - 2. $N_2O_5 = N \text{ is } +5$
 - 3. $NO_2 = N \text{ is } +4$
 - 4. NO = N is +2

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Ouestion 7.

Why should an equation be balanced? Explain with the help of a simple equation.

Solution:

According to law of conservation of mass, "matter can neither be created nor be destroyed in a chemical reaction". This is possible only, if total number of atoms on the reactants side is equals to total number of atoms on products side. Thus, a chemical reaction should be always balanced.

Let us consider an example,

Fe + $H_2O \rightarrow Fe_3O_4 + H_2$

In this equation number of atoms on both sides is not the same, the equation is not balanced.

The balanced form of this equation is given by,

 $3Fe + 4H_2O \rightarrow Fe_3O_4 + 4H_2$

Question 8(a).

Write the balanced chemical equations of the following reactions. sodium hydroxide + sulphuric acid \rightarrow sodium sulphate + water

Solution:

 $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$

Question 8(b).

Write the balanced chemical equations of the following reactions. potassium bicarbonate + sulphuric acid → potassium sulphate + carbon dioxide + water Solution:

 $2KHCO_3 + H_2SO_4 \rightarrow K_2SO_4 + 2CO_2 + 2H_2O$

Question 8(c).

Write the balanced chemical equations of the following reactions. iron + sulphuric acid \rightarrow ferrous sulphate + hydrogen.

Solution:

Fe +
$$H_2SO_4 \rightarrow FeSO_4 + H_2$$

Question 8(d).

Write the balanced chemical equations of the following reactions. chlorine + sulphur dioxide + water \rightarrow sulphuric acid + hydrogen chloride Solution:

$$Cl_2 + SO_2 + 2H_2O \rightarrow H_2SO_4 + 2HCI$$

Question 8(e).

Write the balanced chemical equations of the following reactions. silver nitrate \rightarrow silver + nitrogen dioxide + oxygen"

$$2AgNO_3 \rightarrow 2Ag + 2NO_2 + O_2$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Question 8(f).

Write the balanced chemical equations of the following reactions. copper + nitric acid → copper nitrate + nitric oxide + water Solution:

 $3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$

Question 8(g).

Write the balanced chemical equations of the following reactions. ammonia + oxygen \rightarrow nitric oxide + water Solution:

$$4\mathrm{NH_3} + 5\mathrm{O_2} \xrightarrow{\mathrm{Pt.800}} 6\mathrm{H_2O} + 4\mathrm{NO} \uparrow + \mathrm{Heat}$$

Question 8(h).

Write the balanced chemical equations of the following reactions. barium chloride + sulphuric acid → barium sulphate + hydrochloric acid Solution:

 $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$

Question 8(i).

Write the balanced chemical equations of the following reactions. zinc sulphide + oxygen \rightarrow zinc oxide + sulphur dioxide Solution:

 $2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$

Question 8(j).

Write the balanced chemical equations of the following reactions. aluminium carbide + water \rightarrow aluminium hydroxide + methane Solution:

 $AI_4C_3 + 12H_2O \rightarrow 4AI(OH)_3 + 3CH_4$

Question 8(k).

Write the balanced chemical equations of the following reactions. iron pyrites(FeS₂) + oxygen \rightarrow ferric oxide + sulphur dioxide Solution:

$$4FeS_2 + 11O_2 \rightarrow 2Fe_2O_3 + 8SO_2$$

Question 8(I).

Write the balanced chemical equations of the following reactions. potassium permanganate + hydrochloric acid → potassium chloride + manganese

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

chloride + chlorine + water

Solution:

 $2KMnO_4 + HCI \rightarrow 2KCI + 2MnCl_2 + 5Cl_2 + 8H_2O$

Question 8(m).

Write the balanced chemical equations of the following reactions. aluminium sulphate + sodium hydroxide \rightarrow sodium sulphate + sodium meta aluminate + water.

Solution:

 $Al_2(SO_4)_3 + 8NaOH \rightarrow 3Na_2SO_4 + 2NaAlO_2 + 4H_2O_3$

Question 8(n).

Write the balanced chemical equations of the following reactions. aluminium + sodium hydroxide + water \rightarrow sodium meta aluminate + hydrogen Solution:

 $2AI + 2NaOH + 2H₂O \rightarrow 2NaAIO₂ + 3H₂$

Question 8(o).

Write the balanced chemical equations of the following reactions. potassium dichromate + sulphuric acid → potassium sulphate + chromium sulphate + water + oxygen. Solution:

 $2K_2Cr_2O_7 + 8H_2SO_4 \rightarrow 2K_2SO_4 + 2Cr_2(SO_4)_3 + 8H_2O + 3O_2$

Question 8(p).

Write the balanced chemical equations of the following reactions. potassium dichromate + hydrochloric acid \rightarrow Potassium chloride + chromium chloride + water + chlorine

Solution:

 $K_2Cr_2O_7 + 14HCl \rightarrow 2KCl + 2CrCl_3 + 7H_2O + 3Cl_2$

Question 8(q).

Write the balanced chemical equations of the following reactions. sulphur + nitric acid \rightarrow sulphuric acid + nitrogen dioxide + water. Solution:

 $S + HNO_3 \rightarrow H_2SO_4 + NO_2 + H_2O$

Question 8(r).

Write the balanced chemical equations of the following reactions. sodium chloride + manganese dioxide + sulphuric acid \rightarrow sodium

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

hydrogen sulphate + manganese sulphate + water + chlorine.

Solution:

 $2NaCl + MnO_2 + 3H_2SO_4 \rightarrow 2NaHSO_4 + MnSO_4 + 2H_2O + Cl_2$

Question 9(a).

Define atomic mass unit.

Solution:

Atomic mass unit (amu) is equal to one-twelfth the mass of an atom of carbon-12 (atomic mass of carbon taken as 12).

Question 9(b)(ii)

Calculate the molecular mass of the following:

(NH₄)₂CO₃

Given atomic mass of Cu = 63·5, H = 1, O= 16, C = 12, N = 14, Mg = 24, S = 32

Solution:

Molecular mass of (NH₄)₂CO₃

$$= (2 \times 14) + (8 \times 1) + 12 + (3 \times 16)$$

$$= 28 + 8 + 12 + 48$$

= 96

Question 9(b)(iii)

Calculate the molecular mass of the following:

(NH₂)₂CO

Given atomic mass of Cu = 63.5, H = 1, O= 16, C = 12, N = 14, Mg = 24, S = 32

Solution:

Molecular mass of (NH₂)₂CO

$$= (14 \times 2) + (4 \times 1) + 12 + 16$$

$$= 28 + 4 + 12 + 16$$

= 60

Question 9(b)(iv)

Calculate the molecular mass of the following:

 Mg_3N_2

Given atomic mass of Cu = 63.5, H = 1, O = 16, C = 12, N = 14, Mg = 24, S = 32 Solution:

Molecular mass of Mg₃N₂

$$= (3 \times 24) + (2 \times 14)$$

$$= 72 + 28$$

= 100

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Question 10(a).

Choose the correct answer from the options given below.

Modern atomic symbols are based on the method proposed by

- i. Bohr
- ii. Dalton
- iii. Berzelius
- iv. Alchemist

Solution:

iii. Berzelius

Question 10(b).

Choose the correct answer from the options given below.

The number of carbon atoms in a hydrogen carbonate radical is

- i. One
- ii. Two
- iii. Three
- iv. Four

Solution:

One

Question 10(c).

Choose the correct answer from the options given below.

The formula of iron (III) sulphate is

- i. Fe₃SO₄
- ii. Fe(SO₄)₃
- iii. $Fe_2(SO_4)_3$
- iv. FeSO₄

Solution:

iii. Fe₂(SO₄)₃

Question 10(d).

Choose the correct answer from the options given below.

In water, the hydrogen-to-oxygen mass ratio is

- i. 1: 8
- ii. 1: 16
- iii. 1: 32
- iv. 1: 64

Solution:

i. 1:8

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Question 10(e).

Choose the correct answer from the options given below.

The formula of sodium carbonate is Na₂CO₃ and that of calcium hydrogen carbonate is

- i. CaHCO₃
- ii. Ca(HCO₃)₂
- iii. Ca₂HCO₃
- iv. Ca(HCO₃)₃

Solution:

i. Ca(HCO₃)₂

Solution 11.

- (a) A molecular formula represent The Molecule of an element or of a Compound.
- (b) The molecular formula of water (H₂O) represents 18 parts by mass of water.
- (c) A balanced equation obeys the law of conservation of mass wherever unbalanced equation does not obey this law.
- (d) CO and Co represent carbon-monoxide and cobalt respectively.

Solution 12.

- 1. Relative molecular mass of CHCl3
 - $= 12 + 1 + (3 \times 35.5)$
 - = 12 + 1 + 106.5
 - = 119.5
- 2. Relative molecular mass of (NH4)2 Cr207
 - $= (14 \times 2) + (1 \times 8) + (52 \times 2) + (16 \times 7)$
 - = 28 + 8 + 104 + 112
 - = 252
- 3. Relative molecular mass of CuSO4· 5H2O
 - $= 63.5 + 32 + (16 \times 4) + 5(2 + 16)$
 - = 159.5 + 90
 - = 249.5
- 4. Relative molecular mass of (NH4)2SO4
 - $= (2 \times 14) + (8 \times 1) + 32 + (4 \times 16)$
 - = 28 + 8 + 32 + 64
 - = 132
- 5. Relative molecular mass of CH3COONa

$$= (12 \times 2) + (1 \times 3) + (16 \times 2) + 23$$

- = 24 + 3 + 32 + 23
- = 82
- 6. Potassium chlorate (KClO3)
 - $= 39.1 + 35.5 + (16 \times 3)$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

$$= 39.1 + 35.5 + 48$$

7. Ammonium chloroplatinate (NH4)2PtCl6

$$= (14 \times 2) + (1 \times 8) + 195.08 + (35.5 \times 6)$$

$$= 28 + 8 + 195.08 + 213$$

= 444.08

Solution 13.

Compound	Empirical formula
(a) Benzene (C₅H₅)	СН
CompoundEmpirical formula (b) Glucose (C ₆ H ₁₂ O ₆)	CH₂O
CompoundEmpirical formula (c) Acetylene (C ₂ H ₂)	СН
CompoundEmpirical formula (d) Acetic acid (CH₃COOH)	CH₂O

Solution 14.

Relative molecular mass of MgSO₄·7H₂O

$$=24 + 32 + (16 \times 4) + 7(2 + 16)$$

=246

26 g of Epsom salt contains 126 g of water of crystallisation.

Hence, 100 g of Epsom salt contains

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

 $\frac{100 \times 126}{246}$ = 51.2

The % of H_2O in MgSO₄·7H₂O = 51.2

Solution 15.

(a) Relative molecular mass of Ca(H₂PO₄)₂

 $= 40.07 + (1 \times 4) + (30.9 \times 2) + (16 \times 8)$

= 40.07 + 4 + 61.8 + 128

= 233.87

233.87 g $Ca(H_2PO_4)_2$ contains 61.8 g P

So, 100 g Ca(H₂PO₄)₂ contains

$$\frac{100 \times 61.8}{233.87} = 26.42 \,\mathrm{g}$$

The % of P in $Ca(H_2PO_4)_2$ is 26.42%.

(b) Relative molecular mass of Ca₃(PO₄)₂

 $= (40.07 \times 3) + (30.9 \times 2) + (16 \times 8)$

= 120.21 + 61.8 + 128

= 310.01

310.01 g Ca₃(PO₄)₂ contains 61.8 g P

So, $100 \text{ g Ca}(H_2PO_4)_2 \text{ contains}$

(IMAGE)

The % of P in $Ca(H_2PO_4)_2$ is 19.93%.

Solution 16.

Relative molecular mass of KClO₃

 $= 39.09 + 35.5 + (3 \times 16)$

= 122.59 g

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

 $122.59~\mathrm{g}$ KClO $_3$ contains $39.09~\mathrm{g}$ K Hence, $100~\mathrm{g}$ KClO $_3$ contains

$$=\frac{100\times39.09}{122.59}=31.9g$$

122.59 g KClO₃ contains 35.5 g Cl Hence, 100 g KClO₃ contains

$$=\frac{100\times35.5}{122.59}=28.9\,\mathrm{g}$$

 $122.59~\mathrm{g}~\mathrm{KClO_3}$ contains $48~\mathrm{g}~\mathrm{O}$ Hence, $100~\mathrm{g}~\mathrm{KClO_3}$ contains

$$=\frac{100\times48}{122.59}=39.1g$$

The percentages of K, Cl and O in KClO₃ are 31.9%, 28.9% and 39.1%, respectively.

Solution 17.

Relative molecular mass of urea is

Element	No. of atoms	Atomic mass	Total
N	2	14	28
С	1	12	12
Н	4	1	4

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

0	1	16	16

$$[12 + 16 + 28 + 4] = 60$$

Hence, relative molecular mass of urea = 60

Percentage of carbon =
$$\frac{\text{Wt of carbon}}{\text{Total wt of urea}} \times 100 = \frac{12}{60} \times 100$$

= 20 or 20%

Selina ICSE Solutions for Class 9 Chemistry Chapter 4 The Language of Chemistry

Page No: 8

Question 1.

What is a symbol? What information does it convey?

Solution

A symbol is the short form which stands for the atom of a specific element or the abbreviations used for the names of elements.

- 1. It represents a specific element.
- 2. It represents one atom of an element.
- 3. A symbol represents how many atoms are present in its one gram (gm) atom.
- 4. It represents the number of times an atom is heavier than one atomic mass unit (amu) taken as a standard.

Question 2

Why is the symbol S for sulphur, but Na for sodium and Si for silicon?

Solution

In most cases, the first letter of the name of the element is taken as the symbol for that element and written in capitals (e.g. for sulphur, we use the symbol S). In cases where the first letter has already been adopted, we use a symbol derived from the Latin name (e.g. for sodium/Natrium, we use the symbol Na). In some cases, we use the initial letter in capital together with a small letter from its name (e.g. for silicon, we use the symbol Si).

Question 3.

Write the full form of IUPAC. Name the elements represented by the following symbols:

Au, Pb, Sn, Hg

Solution:

The full form of IUPAC is International Union of Pure and Applied Chemistry.

Names of the elements:

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Au - Gold

Pb - Lead

Sn - Tin

Hg – Mercury

Question 4.

If the symbol for Cobalt, Co, were written as CO, what would be wrong with it?

Solution:

Co stands for Cobalt. If we write CO, then it would mean that it is a compound containing two non-metal ions, i.e. carbon and oxygen, which forms carbon monoxide gas.

Question 5(d).

2H₂

Solution:

- (a) H stands for one atom of hydrogen.
- (b) H₂ stands for one molecule of hydrogen.
- (c) 2H stands for two atoms of hydrogen.

Question 6.

What is meant by atomicity? Name the diatomic element.

Solution:

The number of atoms of an element that join together to form a molecule of that element is known as its atomicity. Diatomic molecules: H_2 , O_2 , N_2 , Cl_2

Question 7(a).

Explain the terms 'valency' and 'variable valency'.

Solution:

- 1. Valency of Na is +1 because it can lose one electron.
- 2. Valency of O is -2 because it can accept two electrons.

Variable valency: It is the combining capacity of an element in which the metal loses more electrons from a shell next to a valence shell in addition to electrons of the valence shell.

Question 7(b).

How are the elements with variable valency named? Explain with an example.

Solution:

If an element exhibits two different positive valencies, then

- 1. for the lower valency, use the suffix -OUS at the end of the name of the metal
- 2. for the higher valency, use the suffix -IC at the end of the name of the metal.

Example:

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468

Email: favouriteacademy@gmail.com

Element	Lower valency	Higher valency
Ferrum (Iron)	Ferrous (Fe ²⁺)	Ferric (Fe ³⁺)

Question 8.

Give the formula and valency of:

- 1. aluminate
- 2. chromate
- 3. aluminium
- 4. cupric

Solution:

	Name	Formula	Valency
a.	Aluminate	AIO ₂	-2
b.	Chromate	CrO ₄	-2
c.	Aluminium	Al	+3
d.	Cupric	Cu	+2

Question 9.b

What is the significance of formula?

Solution:

Chemical formula: The chemical formula of a substance (element or compound) is a symbolic representation of the actual number of atoms present in one molecule of that substance. It also indicates the fixed proportion by weight in which atoms combine.

Rules:

- (i) The positive and negative radicals are written side by side (+ve first) with their charge as a superscript on the right side.
- (ii) Charges are then interchanged and written as a subscript.
- (iii) The final formula is written without the sign of charge, e.g. Hg₂O
 - 1. Hg¹⁺O²⁻

3. Hg₂O

2.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Question 10(a).

What do you understand by the following terms?

Acid radical Solution:

Acid radical: The electronegative or negatively charged radical is called an acid radical.

Examples: Cl⁻, O²⁻

Question 10(b).

What do you understand by the following terms? Basic radical

Solution:

Basic radical: The electropositive or positively charged radical is called a basic radical.

Examples: K+, Na+

Question 11.

Match the following:

Compound	Formula	
(a) Boric acid	i. NaOH	
(b) Phosphoric acid	ii. SiO ₂	
(c) Nitrous acid	iii. Na ₂ CO ₃	
(d) Nitric acid	iv. KOH	
(e) Sulphurous acid	v. CaCO ₃	
(f) Sulphuric acid	vi. NaHCO₃	
(g) Hydrochloric acid	vii. H₂S	
(h) Silica (sand)	viii. H₂O	
(i) Caustic soda (sodium hydroxide)	ix. PH ₃	
(j) Caustic potash (potassium hydroxide)	x. CH ₄	
(k) Washing soda(sodium carbonate)	xi. NH ₃	
(I) Baking soda(sodium bicarbonate)	xii. HCl	
(m) Lime stone.(calcium carbonate)	xiii. H₂SO₃	
(n) Water	xiv. HNO ₃	

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

(o) Hydrogen sulphide	xv. HNO ₂
(p) Ammonia	xvi. H ₃ BO ₃
(q) Phosphine	xvii. H₃PO₄
(r) Methane	xviii. H ₂ SO ₄

Solution.		
Compound	Formula (Ans)	
(a) Boric acid	xvi. H₃BO₃	
(b) Phosphoric acid	xvii. H ₃ PO ₄	
(c) Nitrous acid	xv. HNO ₂	
(d) Nitric acid	xiv. HNO ₃	
(e) Sulphurous acid	xiii. H ₂ SO ₃	
(f) Sulphuric acid	xviii. H ₂ SO ₄	
(g) (a) Hydrochloric acid	xii. HCl	
(h) Silica (sand)	ii. SiO ₂	
(i) Caustic soda (sodium hydroxide)	i. NaOH	
(j) Caustic potash (potassium hydroxide)	iv. KOH	
(k) Washing soda (sodium carbonate)	iii. Na₂CO₃	
(I) Baking soda (sodium bicarbonate)	vi. NaHCO₃	
(m) Lime stone (calcium carbonate)	v. CaCO ₃	
(n) Water	viii. H₂O	
(o) Hydrogen sulphide	vii. H ₂ S	
(p) Ammonia	xi. NH ₃	

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

	(q) Phosphine	ix. PH ₃
-	(r) Methane	x. CH ₄

Question 12.

Select the basic and acidic radicals in the following compounds.

- 1. MgSO₄
- 2. (NH₄)₂SO₄
- 3. Al₂(SO₄)₃
- 4. ZnCO₃
- 5. Mg(OH)₂

Solution:

	Acidic radical	Basic radical
MgSO ₄	SO ₄ ⁻	Mg ⁺
(NH ₄) ₂ SO ₄	SO ₄ ⁻	NH ₄ ⁺
Al ₂ (SO ₄) ₃	SO ₄ ⁻	Al ³⁺
ZnCO₃	CO ₃ ⁻	Zn ²⁺
Mg(OH) ₂	OH-	Mg ²⁺

Question 13.

Write chemical formula of the sulphate of Aluminium, Ammonium and Zinc.

Solution:

Valencies of aluminium, ammonium and zinc are 3, 1 and 2, respectively.

The valency of sulphate is 2.

Hence, chemical formulae of the sulphates of aluminium, ammonium and zinc are $Al_2(SO_4)_3$, $(NH_4)_2SO_4$ and $ZnSO_4$.

Question 14.

The valency of an element A is 3 and that of element B is 2. Write the formula of the compound formed by the combination of A and B

Solution:

Formula of the compound = A_2B_3

Question 15.

Write the chemical names of the following compounds:

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

- 1. Ca₃(PO₄)₂
- 2. K₂CO₃
- 3. K₂MnO₄
- 4. Mn₃(BO₃)₂
- 5. Mg(HCO₃)₂
- 6. Na₄Fe(CN)₆
- 7. Ba(ClO₃)₂
- 8. Ag₂SO₃
- 9. (CH₃COO)₂Pb
- 10. Na₂SiO₃

Solution:

Chemical names of compounds:

- 1. Ca₃(PO₄)₂ Calcium phosphate
- 2. K₂CO₃ Potassium carbonate
- 3. K₂MnO₄ Potassium manganate
- 4. Mn₃(BO₃)₂ Manganese (II) borate
- 5. Mg(HCO₃)₂ Magnesium hydrogen carbonate
- 6. Na₄Fe(CN)₆ Sodium ferrocyanide
- 7. $Ba(ClO_3)_2$ Barium chlorate
- 8. Ag₂SO₃ Silver sulphite
- 9. (CH₃COO)₂Pb Lead acetate
- 10. Na₂SiO₃ Sodium silicate

Question 16

Write the basic radicals and acidic radicals of the following and then write the chemical formulae of these compounds.

- 1. Barium sulphate
- 2. Bismuth nitrate
- 3. Calcium bromide

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

- 4. Ferrous sulphide
- 5. Chromium sulphate
- 6. Calcium silicate
- 7. Potassium ferrocyanide
- 8. Stannic oxide
- 9. Magnesium phosphate
- 10. Sodium zincate
- 11. Stannic phosphate
- 12. Sodium thiosulphate
- 13. Potassium manganate
- 14. Nickel bisulphate

Compounds	Acidic radical	Basic radical	Chemical formulae
Barium sulphate	SO ₄ ²⁻	Ba ²⁺	BaSO ₄
Bismuth nitrate	NO ₃ ⁻	Bi ³⁺	Bi(NO ₃) ₃
Calcium bromide	Br ⁻	Ca ²⁺	CaBr ₂
Ferrous sulphide	S ²⁻	Fe ²⁺	FeS
Chromium sulphate	SO ₄ ²⁻	Cr ³⁺	Cr ₂ (SO ₄) ₃
Calcium silicate	SiO ₄ ²⁻	Ca ²⁺	Ca ₂ SiO ₄
Potassium ferrocyanide	[Fe(CN) ₆] ⁴⁻	K ¹⁺	K ₄ [Fe(CN) ₆]
Stannic oxide	O ²⁻	Sn ²⁺	SnO ₂
Magnesium phosphate	(PO ₄) ³⁻	Mg ²⁺	Mg ₃ (PO ₄) ₂
Sodium zincate	ZnO ²⁻	Na ¹⁺	Na ₂ ZnO ₂
Stannic phosphate	(PO ₄) ³⁻	Sn ⁴⁺	Sn ₃ (PO ₄) ₄
Sodium thiosulphate	(S ₂ O ₃) ²⁻	Na ¹⁺	$Na_2S_2O_3$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Potassium manganate	MnO ₄ ²⁻	K ¹⁺	K_2MnO_4
Nickel bisulphate	HSO ₄ ¹⁻	Ni ³⁺	Ni(HSO ₄) ₃

Question 16.

Give the names of the following compounds.

- 1. NaClO
- 2. NaClO₂
- 3. NaClO₃
- 4. NaClO₄

Solution:

- 1. NaClO Sodium hypochlorite
- 2. NaClO₂ Sodium chlorite
- 3. NaClO₃ Sodium chlorate
- 4. NaClO₄ Sodium perchlorate

Question 18(a).

Complete the following statements by selecting the correct option :

The formula of a compound represents

i. an atom

ii. a particle

iii. a molecule

iv. a combination

Solution:

iii. The formula of a compound represents a molecule.

Question 18(b).

Complete the following statements by selecting the correct option:

The correct formula of aluminium oxide is

i. AlO₃

ii. AlO₂

iii. Al₂O₃

Solution:

iii. The correct formula of aluminium oxide is Al₂O₃.

Question 18(c).

Complete the following statements by selecting the correct option:

The valency of nitrogen in nitrogen dioxide (NO2) is

i. one

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

ii. two

iii. three

iv. four

Solution:

iv. The valency of nitrogen in nitrogen dioxide (NO₂) is four.

Page No: 13

Question 1.

Balance the following equations:

- 1. Fe + $H_2O \rightarrow Fe_3O_4 + H_2$
- 2. Ca + $N_2 \rightarrow Ca_3N_2$
- 3. $Zn + KOH \rightarrow K_2ZnO_2 + H_2$
- 4. $Fe_2O_3 + CO \rightarrow Fe + CO_2$
- 5. PbO + NH₃ \rightarrow Pb + H₂O + N₂
- 6. $Pb_3O_4 \rightarrow PbO + O_2$
- 7. $PbS + O_2 \rightarrow PbO + SO_2$
- 8. $S + H_2SO_4 \rightarrow SO_2 + H_2O$
- 9. $S + HNO_3 \rightarrow H_2SO_4 + NO_2 + H_2O$
- 10. $MnO_2 + HCl \rightarrow MnCl_2 + H_2O + Cl_2$
- 11. $C + H_2SO_4 \rightarrow CO_2 + H_2O + SO_2$
- 12. $KOH + Cl_2 \rightarrow KCI + KCIO + H_2O$
- 13. $NO_2 + H_2O \rightarrow HNO_2 + HNO_3$
- 14. $Pb_3O_4 + HCI \rightarrow PbCl_2 + H_2O + Cl_2$
- 15. $H_2O + Cl_2 \rightarrow HCl + O_2$
- 16. NaHCO₃ \rightarrow Na₂CO₃ + H₂O + CO₂
- 17. $HNO_3 + H_2S \rightarrow NO_2 + H_2O + S$
- 18. $P + HNO_3 \rightarrow NO_2 + H_2O + H_3PO_4$
- 19. $Zn + HNO_3 \rightarrow Zn(NO_3)_2 + H_2O + NO_2$

Solution:

Balanced chemical equations:

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

- 1. 3Fe + $4H_2O \rightarrow Fe_3O_4 + 4H_2$
- 2. $3Ca + N_2 \rightarrow Ca_3N_2$
- 3. $Zn + 2KOH \rightarrow K_2ZnO_2 + H_2$
- 4. $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
- 5. $3PbO + 2NH_3 \rightarrow 3Pb + 3H_2O + N_2$
- 6. $2Pb_3O_4 \rightarrow 6PbO + O_2$
- 7. $2PbS + 3O_2 \rightarrow 2PbO + 2SO_2$
- 8. $S + 2H_2SO_4 \rightarrow 3SO_2 + 2H_2O$
- 9. $S + 6HNO_3 \rightarrow H_2SO_4 + 6NO_2 + 2H_2O$
- 10. $MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + Cl_2$
- 11. $C + 2H_2SO_4 \rightarrow CO_2 + H_2O + SO_2$
- 12. $2KOH + Cl_2 \rightarrow KCI + KCIO + H_2O$
- 13. $2NO_2 + H_2O \rightarrow HNO_2 + HNO_3$
- 14. $Pb_3O_4 + 8HCl \rightarrow 3PbCl_2 + 4H_2O + Cl_2$
- 15. $2H_2O + 2Cl_2 \rightarrow 4HCl + O_2$
- 16. $2NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2$
- 17. $2HNO_3 + H_2S \rightarrow 2NO_2 + 2H_2O + S$
- 18. P + 5HNO₃ \rightarrow 5NO₂ + H₂O + H₃PO₄
- 19. $Zn + 4HNO_3 \rightarrow Zn(NO_3)_2 + 2H_2O + 2NO_2$

Page No: 17

Question 1.

Fill in the blanks:

- 1. Dalton used symbol _____ for oxygen _____ for hydrogen.
- 2. Symbol represents _____ atom(s) of an element.
- 3. Symbolic expression for a molecule is called _____. . .
- 4. Sodium chloride has two radicals. Sodium is a _____ radical while chloride is _____ radical.
- 5. Valency of carbon in CH_4 is _____, in C_2H_6 _____, in C_2H_4 ____ and in C_2H_2 is _____.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone: 8	8828132765, 9833035468
Email: favouriteacademy@gmail.com	

6.	Valency of	f Iron in FeCl₂	is	and in FeCl $_{ extstyle 3}$ it is $__$	
----	------------	-----------------	----	---	--

7. Formula of iron (ill) carbonate is _____.

Solution:

- 1. Dalton used symbol [O] for oxygen,[H] for hydrogen.
- 2. Symbol represents gram atom(s) of an element.
- 3. Symbolic expression for a molecule is called molecular formula.
- 4. Sodium chloride has two radicals. Sodium is a basic radical, while chloride is an acid radical.
- 5. Valency of carbon in CH_4 is 4, in C_2H_64 , in C_2H_44 and in C_2H_2 is 4.
- 6. Valency of iron in FeCl₂ is 2 and in FeCl₃ it is 3.
- 7. Formula of iron (III) carbonate is Fe₂[CO₃]₃.

Question 2.

Complete the following table.

Acid Radicals	Chloride	Nitrate	Sulphate	Carbonate	Hydroxide	Phosphate
Basic Radicals						
Magnesium	MgCl ₂	Mg(NO ₃) ₂	MgSO ₄	MgCO₃	Mg(OH)₂	Mg ₃ (PO ₄) ₂
Sodium						
Zinc						
Silver						
Ammonium						
Calcium						
Iron (II)						
Potassium						

Solution:

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Acid Radicals → Basic Radicals ↓	Chloride	Nitrate	Sulphate	Carbonate	Hydroxide	Phosphate
Magnesium	MgCl ₂	Mg(NO ₃) ₂	MgSO ₄	MgCO ₃	Mg(OH) ₂	Mg ₃ (PO ₄) ₂
Sodium	NaCl	NaNO 3	Na ₂ SO ₄	Na ₂ CO ₃	NaOH	Na ₃ PO ₄
Zinc	ZnCl ₂	Zn (NO ₃) ₂	ZnSO ₄	ZnCO ₃	Zn[OH] ₂	Zn ₃ [PO ₄) ₂
Silver	AgCl	AgNO ₃	Ag ₂ SO ₄	Ag ₂ CO ₃	AgOH	Ag ₃ PO ₄
Ammonium	NH ₄ CI	NH ₄ NO ₃	[NH ₄] ₂ SO ₄	[NH ₄] ₂ SO ₄	NH4OH	[NH ₄] ₃ PO ₄
Calcium	CaCl ₂	Ca(NO ₃) ₂	CaSO ₄	CaCO ₃	Ca[OH] ₂	Ca ₃ [PO ₄] ₂
Iron (II)	FeCl ₂	Fe(NO ₃) ₂	FeSO ₄	FeCO ₃	Fe[OH] ₂	Fe ₃ [PO ₄] ₂
Potassium	KCI	KNO ₃	K ₂ SO ₄	K ₂ CO ₃	КОН	K ₃ PO ₄

Question 3.

Sodium chloride reacts with silver nitrate to produce silver chloride and sodium nitrate

- 1. Write the equation.
- 2. Check whether it is balanced, if not balance it.
- 3. Find the weights of reactants and products.
- 4. State the law which this equation satisfies.

Solution:

- (a) NaCl+ AgNO₃ \rightarrow NaNO₃ + AgCl \downarrow
- (b) It is a balanced equation.
- (c) Weights of reactants:NaCl − 58.44, AgNO₃ − 169.87

Weights of products: NaNO₃ − 84.99, AgCl − 143.32

 $NaCl + AgNO_3 \rightarrow NaNO_3 + AgCl$

 $(23+35.5) + (108+14+48) \rightarrow (23+14+48) + (108+35.5)$

 $58.5 + 170 \rightarrow 85 + 143.5$

 $228.5 g \rightarrow 228.5 g$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

(d) Law of conservation of mass: Matter is neither created nor destroyed in the course of a chemical reaction.

Question 4(a).

What information does the following chemical equation convey? $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$ Solution:

- (a) This equation conveys the following information:
 - 1. The actual result of a chemical change.
 - 2. Substances take part in a reaction, and substances are formed as a result of the reaction.
 - 3. Here, one molecule of zinc and one molecule of sulphuric acid react to give one molecule of zinc sulphate and one molecule of hydrogen.
 - 4. Composition of respective molecules, i.e. one molecule of sulphuric acid contains two atoms of hydrogen, one atom of sulphur and four atoms of oxygen.
 - 5. Relative molecular masses of different substances, i.e. molecular mass of

$$Zn = 65$$

 $H_2SO_4 = (2+32+64) = 98$
 $ZnSO_4 = (65+32+64) = 161$
 $H_2 = 2$

6. 22.4 litres of hydrogen are formed at STP.

Question 4(b).

What information do the following chemical equations convey? Mg + 2HCl \rightarrow MgCl₂+ H₂ Solution:

- (b) This equation conveys the following information:
 - 1. Magnesium reacts with hydrochloric acid to form magnesium chloride and hydrogen gas.
 - 2. 24 g of magnesium reacts with 2(1 + 35.5) = 73 g of hydrochloric acid to produce (24 + 71), i.e. 95 g of magnesium chloride.
 - 3. Hydrogen produced at STP is 22.4 litres.

Question 5(a).

What are polyatomic ions? Give two examples.

Solution:

(a) A poly-atomic ion is a charged ion composed of two or more atoms covalently bounded that can be carbonate (CO_3^{2-1}) and sulphate (SO_4^{2-1})

Question 5(b).

Name the fundamental law that is involved in every equation.

Solution:

(b) The fundamental laws which are involved in every equation are:

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

- 1. A chemical equation consists of formulae of reactants connected by plus sign (+) and arrow (→) followed by the formulae of products connected by plus sign (+).
- 2. The sign of an arrow (\rightarrow) is to read 'to form'. It also shows the direction in which reaction is predominant.

Question 6(a).

What is the valency of: fluorine in CaF₂

Solution:

(a) Valency of fluorine in CaF₂ is -1.

Question 6(b).

What is the valency of:

sulphur in SF₆

Solution:

(b) Valency of sulphur in SF₆ is -6.

Question 6(c).

What is the valency of:

phosphorus in PH₃

Solution:

(c) Valency of phosphorus in PH₃ is +3.

Question 6(d).

What is the valency of: carbon in CH₄

Solution:

(d) Valency of carbon in CH₄ is +4.

Question 6(e).

What is the valency of:

nitrogen in the following compounds:

(i) N₂O₃ (ii) N₂O₅ (iii) NO₂ (iv) NO

Solution:

(e) Valency of nitrogen in the given compounds:

- 1. $N_2O_3 = N \text{ is } +3$
- 2. $N_2O_5 = N \text{ is } +5$
- 3. $NO_2 = N \text{ is } +4$
- 4. NO = N is +2

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Question 7.

Why should an equation be balanced? Explain with the help of a simple equation.

Solution:

According to law of conservation of mass, "matter can neither be created nor be destroyed in a chemical reaction". This is possible only, if total number of atoms on the reactants side is equals to total number of atoms on products side. Thus, a chemical reaction should be always balanced.

Let us consider an example,

Fe + $H_2O \rightarrow Fe_3O_4 + H_2$

In this equation number of atoms on both sides is not the same, the equation is not balanced.

The balanced form of this equation is given by,

 $3Fe + 4H₂O \rightarrow Fe₃O₄ + 4H₂$

Question 8(a).

Write the balanced chemical equations of the following reactions. sodium hydroxide + sulphuric acid \rightarrow sodium sulphate + water

Solution:

 $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$

Question 8(b).

Write the balanced chemical equations of the following reactions. potassium bicarbonate + sulphuric acid \rightarrow potassium sulphate + carbon dioxide + water Solution:

 $2KHCO_3 + H_2SO_4 \rightarrow K_2SO_4 + 2CO_2 + 2H_2O$

Question 8(c).

Write the balanced chemical equations of the following reactions. iron + sulphuric acid \rightarrow ferrous sulphate + hydrogen.

Solution:

Fe + $H_2SO_4 \rightarrow FeSO_4 + H_2$

Question 8(d).

Write the balanced chemical equations of the following reactions. chlorine + sulphur dioxide + water → sulphuric acid + hydrogen chloride

Solution:

 $Cl_2 + SO_2 + 2H_2O \rightarrow H_2SO_4 + 2HCI$

Question 8(e).

Write the balanced chemical equations of the following reactions. silver nitrate \rightarrow silver + nitrogen dioxide + oxygen"

Solution:

 $2AgNO_3 \rightarrow 2Ag + 2NO_2 + O_2$

Question 8(f).

Write the balanced chemical equations of the following reactions.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

copper + nitric acid → copper nitrate + nitric oxide + water

Solution:

 $3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$

Question 8(g).

Write the balanced chemical equations of the following reactions.

ammonia + oxygen → nitric oxide + water

Solution:

$$4 \text{NH}_3 + 5 \text{O}_2 \xrightarrow{\quad \text{Pt. 800} \quad} 6 \text{H}_2 \text{O} + 4 \text{NO} \uparrow + \text{Heat}$$

Question 8(h).

Write the balanced chemical equations of the following reactions.

barium chloride + sulphuric acid \rightarrow barium sulphate + hydrochloric acid

Solution:

 $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$

Question 8(i).

Write the balanced chemical equations of the following reactions.

zinc sulphide + oxygen → zinc oxide + sulphur dioxide

Solution:

 $2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$

Question 8(j).

Write the balanced chemical equations of the following reactions.

aluminium carbide + water \rightarrow aluminium hydroxide + methane

Solution:

 $AI_4C_3 + 12H_2O \rightarrow 4AI(OH)_3 + 3CH_4$

Question 8(k).

Write the balanced chemical equations of the following reactions.

iron pyrites(FeS₂) + oxygen \rightarrow ferric oxide + sulphur dioxide

Solution:

 $4FeS_2 + 11O_2 \rightarrow 2Fe_2O_3 + 8SO_2$

Question 8(I).

Write the balanced chemical equations of the following reactions.

potassium permanganate + hydrochloric acid → potassium chloride + manganese

chloride + chlorine + water

Solution:

 $2KMnO_4 + HCl \rightarrow 2KCl + 2MnCl_2 + 5Cl_2 + 8H_2O$

Question 8(m).

Write the balanced chemical equations of the following reactions.

aluminium sulphate + sodium hydroxide \rightarrow sodium sulphate + sodium meta aluminate + water.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution:

 $Al_2(SO_4)_3 + 8NaOH \rightarrow 3Na_2SO_4 + 2NaAlO_2 + 4H_2O$

Question 8(n).

Write the balanced chemical equations of the following reactions.

aluminium + sodium hydroxide + water → sodium meta aluminate + hydrogen

Solution:

 $2AI + 2NaOH + 2H_2O \rightarrow 2NaAlO_2 + 3H_2$

Question 8(o).

Write the balanced chemical equations of the following reactions.

potassium dichromate + sulphuric acid → potassium sulphate + chromium sulphate + water + oxygen.

Solution:

 $2K_2Cr_2O_7 + 8H_2SO_4 \rightarrow 2K_2SO_4 + 2Cr_2(SO_4)_3 + 8H_2O + 3O_2$

Question 8(p).

Write the balanced chemical equations of the following reactions.

potassium dichromate + hydrochloric acid → Potassium chloride + chromium chloride + water + chlorine Solution:

 $K_2Cr_2O_7 + 14HCl \rightarrow 2KCl + 2CrCl_3 + 7H_2O + 3Cl_2$

Question 8(q).

Write the balanced chemical equations of the following reactions.

sulphur + nitric acid → sulphuric acid + nitrogen dioxide + water.

Solution:

 $S + HNO_3 \rightarrow H_2SO_4 + NO_2 + H_2O$

Question 8(r).

Write the balanced chemical equations of the following reactions.

sodium chloride + manganese dioxide + sulphuric acid → sodium

hydrogen sulphate + manganese sulphate + water + chlorine.

Solution:

 $2NaCl + MnO_2 + 3H_2SO_4 \rightarrow 2NaHSO_4 + MnSO_4 + 2H_2O + Cl_2$

Question 9(a).

Define atomic mass unit.

Solution:

Atomic mass unit (amu) is equal to one-twelfth the mass of an atom of carbon-12 (atomic mass of carbon taken as 12).

Question 9(b)(ii)

Calculate the molecular mass of the following:

(NH₄)₂CO₃

Given atomic mass of Cu = 63·5, H = 1, O= 16, C = 12, N = 14, Mg = 24, S = 32

Solution:

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Molecular mass of (NH₄)₂CO₃

$$= (2 \times 14) + (8 \times 1) + 12 + (3 \times 16)$$

$$= 28 + 8 + 12 + 48$$

= 96

Question 9(b)(iii)

Calculate the molecular mass of the following:

(NH₂)₂CO

Given atomic mass of Cu = 63·5, H = 1, O= 16, C = 12, N = 14, Mg = 24, S = 32

Solution:

Molecular mass of (NH₂)₂CO

$$= (14 \times 2) + (4 \times 1) + 12 + 16$$

$$= 28 + 4 + 12 + 16$$

= 60

Question 9(b)(iv)

Calculate the molecular mass of the following:

Mg₃N₂

Given atomic mass of Cu = 63.5, H = 1, O = 16, C = 12, N = 14, Mg = 24, S = 32

Solution:

Molecular mass of Mg₃N₂

$$= (3 \times 24) + (2 \times 14)$$

$$= 72 + 28$$

= 100

Question 10(a).

Choose the correct answer from the options given below.

Modern atomic symbols are based on the method proposed by

- i. Bohr
- ii. Dalton
- iii. Berzelius
- iv. Alchemist

Solution:

iii. Berzelius

Question 10(b).

Choose the correct answer from the options given below.

The number of carbon atoms in a hydrogen carbonate radical is

- i. One
- ii. Two
- iii. Three
- iv. Four

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

C - I		•	
Sol	1117	חיי	n·
20	u	JU.	ıı.

One

Question 10(c).

Choose the correct answer from the options given below.

The formula of iron (III) sulphate is

- i. Fe₃SO₄
- ii. Fe(SO₄)₃
- iii. Fe₂(SO₄)₃
- iv. FeSO₄

Solution:

iii. Fe₂(SO₄)₃

Question 10(d).

Choose the correct answer from the options given below.

In water, the hydrogen-to-oxygen mass ratio is

- i. 1:8
- ii. 1: 16
- iii. 1: 32
- iv. 1: 64

Solution:

i. 1:8

Question 10(e).

Choose the correct answer from the options given below.

The formula of sodium carbonate is Na₂CO₃ and that of calcium hydrogen carbonate is

- i. CaHCO₃
- ii. Ca(HCO₃)₂
- iii. Ca₂HCO₃
- iv. Ca(HCO₃)₃

Solution:

i. Ca(HCO₃)₂

Solution 11.

- (a) A molecular formula represent The Molecule of an element or of a Compound.
- (b) The molecular formula of water (H₂O) represents 18 parts by mass of water.
- (c) A balanced equation obeys the law of conservation of mass wherever unbalanced equation does not obey this law.
- (d) CO and Co represent carbon-monoxide and cobalt respectively.

Solution 12.

1. Relative molecular mass of CHCl3

$$= 12 + 1 + (3 \times 35.5)$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

$$= 12 + 1 + 106.5$$

2. Relative molecular mass of (NH4)2 Cr2O7

$$= (14 \times 2) + (1 \times 8) + (52 \times 2) + (16 \times 7)$$

- = 252
- 3. Relative molecular mass of CuSO4· 5H2O

$$= 63.5 + 32 + (16 \times 4) + 5(2 + 16)$$

$$= 159.5 + 90$$

- = 249.5
- 4. Relative molecular mass of (NH4)2SO4

$$= (2 \times 14) + (8 \times 1) + 32 + (4 \times 16)$$

$$= 28 + 8 + 32 + 64$$

- = 132
- 5. Relative molecular mass of CH3COONa

$$= (12 \times 2) + (1 \times 3) + (16 \times 2) + 23$$

$$= 24 + 3 + 32 + 23$$

- = 82
- 6. Potassium chlorate (KClO3)

$$= 39.1 + 35.5 + (16 \times 3)$$

- = 122.6
- 7. Ammonium chloroplatinate (NH4)2PtCl6

$$= (14 \times 2) + (1 \times 8) + 195.08 + (35.5 \times 6)$$

$$= 28 + 8 + 195.08 + 213$$

= 444.08

Solution 13.

Compound	Empirical formula
(a) Benzene (C ₆ H ₆)	СН
CompoundEmpirical formula (b) Glucose (C ₆ H ₁₂ O ₆)	CH₂O
CompoundEmpirical formula (c) Acetylene (C ₂ H ₂)	СН

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

CompoundEmpirical formula

(d) Acetic acid (CH₃COOH)

CH₂O

Solution 14.

Relative molecular mass of MgSO₄·7H₂O

$$=24 + 32 + (16 \times 4) + 7(2 + 16)$$

=246

26 g of Epsom salt contains 126 g of water of crystallisation.

Hence, 100 g of Epsom salt contains

$$\frac{100 \times 126}{246}$$
= 51.2

The % of H_2O in $MgSO_4 \cdot 7H_2O = 51.2$

Solution 15.

(a) Relative molecular mass of Ca(H₂PO₄)₂

$$= 40.07 + (1 \times 4) + (30.9 \times 2) + (16 \times 8)$$

$$=40.07 + 4 + 61.8 + 128$$

= 233.87

233.87 g Ca(H₂PO₄)₂ contains 61.8 g P

So, 100 g Ca(H₂PO₄)₂ contains

$$\frac{100 \times 61.8}{233.87} = 26.42 g$$

The % of P in $Ca(H_2PO_4)_2$ is 26.42%.

(b) Relative molecular mass of Ca₃(PO₄)₂

$$= (40.07 \times 3) + (30.9 \times 2) + (16 \times 8)$$

$$= 120.21 + 61.8 + 128$$

= 310.01

310.01 g Ca₃(PO₄)₂ contains 61.8 g P

So, 100 g Ca(H₂PO₄)₂ contains

(IMAGE)

The % of P in $Ca(H_2PO_4)_2$ is 19.93%.

Solution 16.

Relative molecular mass of KClO₃

$$= 39.09 + 35.5 + (3 \times 16)$$

= 122.59 g

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

122.59 g $\,$ KClO $_3$ contains 39.09 g K $\,$ Hence, 100 g $\,$ KClO $_3$ contains

$$=\frac{100\times39.09}{122.59}=31.9g$$

 $122.59~\mathrm{g}~\mathrm{KClO_3}$ contains $35.5~\mathrm{g}~\mathrm{Cl}$ Hence, $100~\mathrm{g}~\mathrm{KClO_3}$ contains

$$=\frac{100\times35.5}{122.59}=28.9\,\mathrm{g}$$

 $122.59~\mathrm{g}~\mathrm{KClO_3}$ contains $48~\mathrm{g}~\mathrm{O}$ Hence, $100~\mathrm{g}~\mathrm{KClO_3}$ contains

$$=\frac{100\times48}{122.59}=39.1g$$

The percentages of K, Cl and O in KClO₃ are 31.9%, 28.9% and 39.1%, respectively.

Solution 17.

Relative molecular mass of urea is

Element	No. of atoms	Atomic mass	Total
N	2	14	28
С	1	12	12
Н	4	1	4
0	1	16	16

$$[12 + 16 + 28 + 4] = 60$$

Hence, relative molecular mass of urea = 60

Percentage of carbon =
$$\frac{\text{Wt of carbon}}{\text{Total wt of urea}} \times 100 = \frac{12}{60} \times 100$$

= 20 or 20%