

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Selina ICSE Solutions for Class 9 Maths Chapter 11 Inequalities

Exercise 11

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 1:

In ∆ ABC,

AB = AC[Given]

∴ ∠ACB = ∠B[angles opposite to equal sides are equal]

 \angle B = 70^{0} [Given]

⇒∠ACB = 70⁰.....(i)

Now,

 \angle ACB + \angle ACD = 180 0 [BCD is a straight line]

 \Rightarrow 70⁰ + \angle ACD = 180⁰

⇒∠ACD = 110⁰.....(ii)

In ∆ ACD,

 \angle CAD + \angle ACD + \angle D = 180⁰

 \Rightarrow \angle CAD + 110⁰ + \angle D = 180⁰ [From (ii)]

 \Rightarrow \angle CAD + \angle D = 70°

But $\angle D = 40^{\circ}$ [Given]

 \Rightarrow \angle CAD + 40⁰= 70⁰

 \Rightarrow \angle CAD = 30⁰....(iii)

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

In ∆ ACD,

 \angle ACD = 110⁰[From (ii)]

 \angle CAD = 30^{0} [From (iii)]

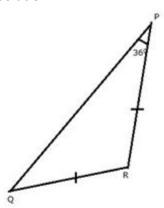
 $\angle D = 40^0$ [Given]

:: ZD > ZCAD

 \Rightarrow AC > CD

[Greater angle has greater side opposite to it]

Also,


AB = AC[Given]

Therefore, AB > CD.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 2:

In ∆ PQR,

QR = PR[Given]

 $\therefore \angle P = \angle Q[angles opposite to equal sides are equal]$

$$\angle P = 36^{\circ}$$
[Given]

$$\Rightarrow \angle Q = 36^{\circ}$$

In ∆ PQR,

$$\angle P + \angle Q + \angle R = 180^{\circ}$$

$$\Rightarrow$$
36⁰ + 36⁰ + \angle R = 180⁰

$$\Rightarrow$$
 \angle R + 72⁰ = 180⁰

$$\Rightarrow \angle R = 108^{\circ}$$

Now,

$$\angle R = 108^{\circ}$$

$$\angle P = 36^{\circ}$$

$$\angle Q = 36^{\circ}$$

Since \angle R is the greatest, therefore, PQ is the largest side.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

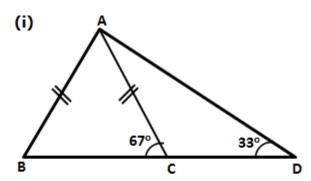
Solution 3:

The sum of any two sides of the triangle is always greater than third side of the triangle.

Third side < 13 + 8 = 21 cm.

The difference between any two sides of the triangle is always less than the third side of the triangle.

Third side > 13 - 8 = 5 cm.


Therefore, the length of the third side is between 5 cm and 9 cm, respectively.

The value of a = 5 cm and b = 21 cm.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 4:


```
In ∆ABC,
```

$$AB = AC$$

$$\Rightarrow \angle BAC = 180^{\circ} - \angle ABC - \angle ACB$$
 (angle sum property)

$$\Rightarrow$$
 \angle BAC = 180° - 67° - 67° = 46°

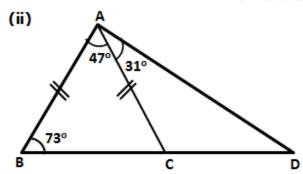
Sin œ ∠BAC < ∠ABC, we have

Now,
$$\angle ACD = 180^{\circ} - \angle ACB$$
 (linear pair)

Thus, in ∆ACD,

$$\Rightarrow$$
 \angle CAD = 180° - 113° - 33° = 34°

Sin œ ∠ADC < ∠CAD, we have


AC < CD(2)

From (1) and (2), we have

BC < AC < CD

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

In ΔABC,

∠BAC < ∠ABC

⇒BC < AC(1)

Now, ∠ACB = 180° - ∠ABC - ∠BAC

⇒ ∠ACB = 180° - 73° - 47°

⇒∠ACB = 60°

Now, ∠ACD = 180° - ∠ACB

⇒∠ACD = 180° - 60° = 120°

Now, in ΔACD,

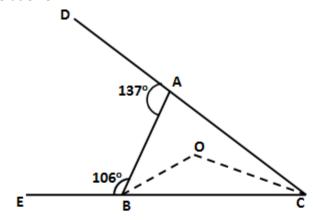
ZADC = 180° - ZACD - ZCAD

⇒∠ADC = 180° - 120° - 31°

⇒∠ADC = 29°

Since \angle ADC < \angle CAD, we have

AC < CD(2)


From (1) and (2), we have

BC < AC < CD

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 5:

$$\angle ABC = 180 - \angle ABE = 180^{\circ} - 106^{\circ} = 74^{\circ}$$

Thus, in ∆ABC,

$$\Rightarrow$$
 \angle ACB = 180° - 43° - 74° = 63°

Now, $\angle ABC = \angle OBC + \angle ABO$

$$\Rightarrow$$
 \angle ABC = $2\angle$ OBC (OB is biosector of \angle ABC)

Similarly,

$$\Rightarrow$$
 \angle ACB = $2\angle$ OCB (OC is bisector of \angle ACB)

⇒ 63° = 2∠0CB

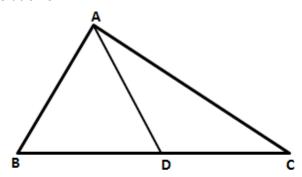
⇒∠OCB = 31.5°

Now, in ABOC,

 $\angle BOC = 180^{\circ} - \angle OBC - \angle OCB$

 \Rightarrow \angle BOC = 180° - 37° - 31.5°

⇒∠BOC = 111.5°


Since, $\angle BOC > \angle OBC > \angle OCB$, we have

BC > OC > OB

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 6:

AD > AC (given)

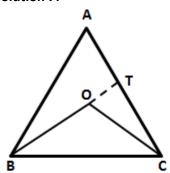
 \Rightarrow \angle C > \angle ADC(1)

Now, $\angle ADC > \angle B + \angle BAC$ (Exterior Angle Property)

 $\Rightarrow \angle ADC > \angle B$ (2)

From (1) and (2), we have

 $\angle C > \angle ADC > \angle B$


 $\Rightarrow \angle C > \angle B$

⇒ AB > AC

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 7:

Construction: Produce BO to meet AC at T.

In ∆ABT,

AB + AT > BT (Sum of two sides of a Δ is greater than third side)

 \Rightarrow AB + AT > BO + OT(1)

Also, in AOCT,

OT + TC > OC(2)

Adding (1) and (2), we have

AB + AT + OT + TC > BO + OT + OC

⇒ AB + AT + TC > BO + OC

⇒ AB + AC > OB + OC

⇒ OB + OC < AB + AC

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 8:

In ∆ BEC,

$$\angle$$
B+ \angle BEC+ \angle BCE = 180⁰

$$\angle B = 65^{\circ}$$
 [Given]

$$\Rightarrow$$
65⁰ + 90⁰ + \angle BCE = 180⁰

$$\Rightarrow$$
 \angle BCE = 180° - 155°

$$\Rightarrow$$
 \angle BCE = 25⁰ = \angle DCF(i)

In ∆ CDF,

$$\angle$$
 DCF + \angle FDC + \angle CFD = 180⁰

$$\angle$$
 DCF = 25⁰[From (i)]

$$\angle$$
 FDC = 90⁰[AD is perpendicular to BC]

$$\Rightarrow$$
25⁰ + 90⁰ + \angle CFD = 180⁰

$$\Rightarrow$$
 \angle CFD = 180° - 115°

Now,
$$\angle$$
 AFC + \angle CFD = 180° [AFD is a straight line]

$$\Rightarrow$$
 \angle AFC + 65⁰ = 180⁰

In ∆ ACE,

$$\angle$$
 ACE + \angle CEA + \angle BAC = 180⁰

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

$$\angle$$
 BAC = 60° [Given]

$$\Rightarrow$$
 \angle ACE + 90⁰ + 60⁰ = 180⁰

$$\Rightarrow$$
 \angle ACE = 180° - 150°

$$\Rightarrow$$
 \angle ACE = 30⁰....(iv)

In ∆ AFC,

$$\angle$$
 AFC + \angle ACF + \angle FAC = 180°

$$\angle$$
 ACF = 30° [From (iv)]

$$\Rightarrow$$
115⁰ + 30⁰ + \angle FAC = 180⁰

$$\Rightarrow$$
 \angle FAC = $180^{\circ} - 145^{\circ}$

$$\Rightarrow$$
 \angle FAC = 35⁰....(v)

In ∆ AFC,

$$\angle$$
 FAC = 35° [From (v)]

$$\angle$$
 ACF = 30° [From (iv)]

$$\Rightarrow$$
 CF $>$ AF

In ∆ CDF,

$$\angle$$
 DCF = 25⁰[From (i)]

$$\angle$$
 CFD = 65⁰[From (ii)]

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 9:

$$\angle$$
 ACB = 74 $^{\circ}$(i)[Given]

$$\Rightarrow$$
74⁰ + \angle ACD = 180⁰

In ∆ ACD,

$$\angle$$
 ACD + \angle ADC+ \angle CAD = 180°

Given that AC = CD

$$\Rightarrow$$
106⁰ + \angle CAD + \angle CAD = 180⁰[From (ii)]

$$\Rightarrow$$
2 \angle CAD = 74⁰

$$\Rightarrow$$
 \angle CAD = 37⁰ = \angle ADC....(iii)

Now,

$$\angle$$
 BAD = 110⁰[Given]

$$\angle$$
 BAC + \angle CAD = 110 $^{\circ}$

$$\angle$$
 BAC + 37 0 = 110 0

$$\angle$$
 BAC = 73⁰.....(iv)

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

In ∆ ABC,

$$\angle$$
B+ \angle BAC+ \angle ACB = 180 $^{\circ}$

$$\Rightarrow$$
 \angle B + 73⁰ + 74⁰ = 180⁰[From (i) and (iv)]

$$\Rightarrow$$
 \angle B + 147⁰ = 180⁰

$$\Rightarrow$$
 \angle B = 33⁰....(v)

$$\therefore \angle BAC > \angle B$$
 [From (iv) and (v)]

 \Rightarrow BC > AC

But,

⇒BC > CD

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 10:

(i) ∠ ADC + ∠ ADB = 180⁰[BDC is a straight line]

 \angle ADC = 90⁰[Given]

 $90^{\circ} + \angle ADB = 180^{\circ}$

 $\angle ADB = 90^{\circ}$(i)

In ∆ ADB,

 $\angle ADB = 90^{\circ}[From(i)]$

 $\therefore \angle B + \angle BAD = 90^{\circ}$

Therefore, \angle B and \angle BAD are both acute, that is less than 90°.

:. AB > BD(ii)[Side opposite 900 angle is greater than

side opposite acute angle]

(ii) In ∆ADC,

 $\angle ADB = 90^{\circ}$

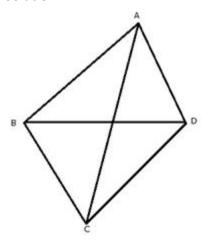
 $\therefore \angle C + \angle DAC = 90^{\circ}$

Therefore, \angle C and \angle DAC are both acute, that is less than 90°.

:: AC > CD(iii)[Side opposite 900 angle is greater than

side opposite acute angle]

Adding (ii) and (iii)


AB + AC > BD + CD

 \Rightarrow AB + AC > BC

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 11:

Const: Join AC and BD.

(i) In ∆ ABC,

AB + BC > AC....(i)[Sum of two sides is greater than the

third side]

In ∆ ACD,

AC + CD > DA....(ii)[Sum of two sides is greater than the

third side]

Adding (i) and (ii)

AB + BC + AC + CD > AC + DA

AB + BC + CD > AC + DA - AC

AB + BC + CD > DA(iii)

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

(ii)In ∆ ACD,

CD + DA > AC....(iv)[Sum of two sides is greater than the

third side]

Adding (i) and (iv)

AB + BC + CD + DA > AC + AC

AB + BC + CD + DA > 2AC

(iii) In ∆ ABD,

AB + DA > BD....(v)[Sum of two sides is greater than the

third side]

In ∆ BCD,

BC + CD > BD....(vi)[Sum of two sides is greater than the

third side]

Adding (v) and (vi)

AB + DA + BC + CD > BD + BD

AB + DA + BC + CD > 2BD

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 12:

(i) In ∆ ABC,

AB = BC = CA[ABC is an equilateral triangle]

$$\therefore \angle A = \angle B = \angle C$$

$$\therefore \angle A = \angle B = \angle C = \frac{180^{\circ}}{3}$$

$$\Rightarrow$$
 \angle A = \angle B = \angle C = 60°

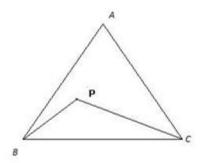
In ∆ ABP,

$$\angle A = 60^{\circ}$$

[Side opposite to greater side is greater]

$$\angle C = 60^{\circ}$$

$$\therefore$$
 \angle C > \angle CBP


$$\Rightarrow$$
 BP > PC

[Side opposite to greater side is greater]

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 13:

Let
$$\angle$$
 PBC = x and \angle PCB = y

then.

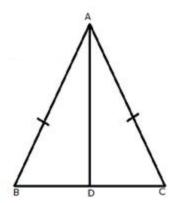
$$\angle$$
 BPC = 180⁰ - (x + y)(i)

Let
$$\angle$$
 ABP = a and \angle ACP = b

then,

$$\angle$$
 BAC = 180⁰ - (x + a) - (y + b)

$$\Rightarrow$$
 \angle BAC = 180⁰ - (x + y) - (a + b)


$$\Rightarrow \angle BAC = \angle BPC - (a + b)$$

$$\Rightarrow \angle BPC = \angle BAC + (a + b)$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 14:

We know that exterior angle of a triangle is always greater than each of the interior opposite angles.

∴ In <u>ABD</u>,

∠ ADC > ∠ B(i)

In ∆ ABC,

AB = AC

 $\therefore \angle B = \angle C....(ii)$

From (i) and (ii)

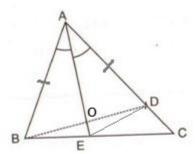
 $\angle ADC > \angle C$

(i) In ∆ ADC,

 $\angle ADC > \angle C$

: AC > AD(iii) [side opposite to greater angle is greater]

(ii) In ∆ABC,


AB = AC

⇒AB > AD[From (iii)]

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 15:

Const: Join ED.

In \triangle AOB and \triangle AOD,

AB = AD[Given]

AO = AO[Common]

 \angle BAO = \angle DAO[AO is bisector of \angle A]

∴ ∆AOB ≅ ∆AOD[SAS criterion]

Hence,

BO = OD.....(i)[cpct]

 $\angle AOB = \angle AOD(ii)[cpct]$

 $\angle ABO = \angle ADO \Rightarrow \angle ABD = \angle ADB \dots (iii)[cpct]$

Now,

∠ AOB = ∠ DOE[Vertically opposite angles]

∠AOD = ∠BOE[Vertically opposite angles]

 $\Rightarrow \angle BOE = \angle DOE(iv)[From (ii)]$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

(i) In ∆ BOE and ∆ DOE,

BO = CD[From(i)]

OE = OE[Common]

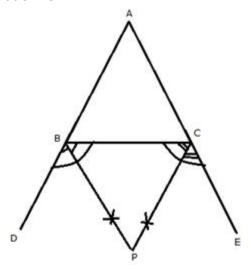
 \angle BOE = \angle DOE[From (iv)]

∴ ΔBOE ≅ ΔDOE [SAS criterion]

Hence, BE = DE[cpct]

(ii) In ∆BCD,

 \angle ADB = \angle C + \angle CBD[Ext. angle = sum of opp. int. angles]


 \Rightarrow \angle ADB > \angle C

 $\Rightarrow \angle ABD > \angle C[From (iii)]$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email: favouriteacademy@gmail.com

Solution 16:

In ∆ ABC,

AB > AC.

⇒∠ABC < ∠ACB

: 180⁰ -∠ ABC > 180⁰ -∠ ACB

$$\Rightarrow \frac{180^{0} - \angle ABC}{2} > \frac{180^{0} - \angle ACB}{2}$$

$$\Rightarrow$$
 90° - $\frac{1}{2}$ \angle ABC > 90° - $\frac{1}{2}$ \angle ACB

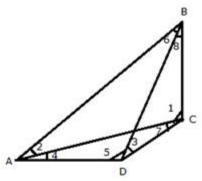
⇒ ∠CBP > ∠BCP [BP is bisector of ∠CBD

and CP is bisector of ∠BCE]

⇒PC > PB

[side opposite to greater angle is greater]

Solution 17:


Since AB is the largest side and BC is the smallest side of the triangle ABC

$$AB > AC > BC$$

 $\Rightarrow 180^{\circ} - z^{\circ} > 180^{\circ} - y^{\circ} > 180^{\circ} - x^{\circ}$
 $\Rightarrow -z^{\circ} > -y^{\circ} > -x^{\circ}$
 $\Rightarrow z^{\circ} < y^{\circ} < x^{\circ}$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 18:

In the quad. ABCD,

Since AB is the longest side and DC is the shortest side.

(i) \angle 1 > \angle 2[AB > BC]

 \angle 7 > \angle 4[AD > DC]

∴ ∠1+∠7>∠2+∠4

 $\Rightarrow \angle C > \angle A$

(ii) $\angle 5 > \angle 6[AB > AD]$

 $\angle 3 > \angle 8[BC > CD]$

∴ ∠5+∠3>∠6+∠8

 $\Rightarrow \angle D > \angle B$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 19:

(i) Since AB > AC

$$\Rightarrow$$
 180° - z > 180° - v

$$\Rightarrow -z > -y$$

$$\Rightarrow$$
 z < y....(i)

Also since AC > BC

$$\Rightarrow$$
 180° - y > 180° - x

$$\Rightarrow -y > -x$$

$$\Rightarrow$$
 y < x....(ii)

From (i) and (ii)

(ii) y > x > z[Given]

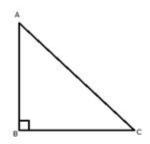
Taking y > x

$$\Rightarrow$$
 (180° - \angle ABC) > (180° - \angle BAC)

Again taking x > z

$$\Rightarrow$$
 (180° - \angle BAC) > (180° - \angle ACB)

From (i) and (ii)


Writing in descending order

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

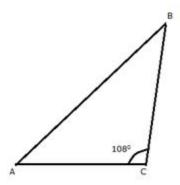
Solution 20:

(i)

$$∴$$
 ∠B = 90° [Given]

$$\angle A + \angle B + \angle C = 180^{\circ}$$

Hence,
$$\angle B > \angle A \Rightarrow AC > BC$$


Similarly,
$$\angle B > \angle C \Rightarrow AC > AB$$

Hence, hypotenuse is the greatest side.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

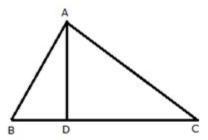
(ii)

$$\therefore$$
 \angle ACB = 108° [Given]

$$\Rightarrow \angle A + \angle B = 72^{\circ}$$

$$\Rightarrow \angle A < 72^{\circ}$$
 and $\angle B < 72^{\circ}$

Hence, \angle ACB > \angle A \Rightarrow AB > BC


Similarly, ∠ ACB > ∠ B ⇒AB > AC

Therefore, AB is the largest side.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 21:

In ∆ ABD,

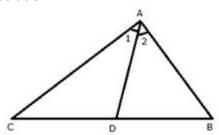
AB + BD > AD(i)

In ∆ ACD,

AC + DC > AD(ii)

Adding (i) and (ii)

AB + BD + AC + DC > 2AD


AB+BD+DC+AC > 2AD

AB + BC + AC > 2AD

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 22:

In ∆ ADC,

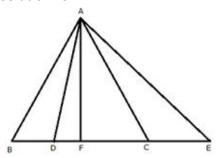
In ∆ ADB,

But AC > AB[Given]

$$\Rightarrow \angle B > \angle C$$

Also given, $\angle 2 = \angle 1[AD \text{ is bisector of } \angle A]$

$$\Rightarrow \angle 2 + \angle B > \angle 1 + \angle C \dots (iii)$$


From (i), (ii) and (iii)

⇒∠ADC > ∠ADB

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 23:

We know that the bisector of the angle at the vertex of an isosceles triangle bisects the base at right angle.

Using Pythagoras theorem in △ AFB,

$$AB^2 = AF^2 + BF^2$$
....(i)

In ∆ AFD,

$$AD^2 = AF^2 + DF^2$$
....(ii)

We know ABC is isosceles triangle and AB = AC

$$AC^2 = AF^2 + BF^2$$
.....(iii)[From (i)]

Subtracting (ii) from (iii)

$$AC^2 - AD^2 = AF^2 + BF^2 - AF^2 - DF^2$$

$$AC^2 - AD^2 = BF^2 - DF^2$$

Let 2DF = BF

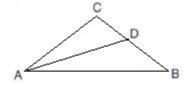
$$AC^2 - AD^2 = (2DF)^2 - DF^2$$

$$AC^2 - AD^2 = 4DF^2 - DF^2$$

$$AC^2 = AD^2 + 3DF^2$$

$$\Rightarrow$$
AC² > AD²

Similarly, AE > AC and AE > AD.


Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 24:

The sum of any two sides of the triangle is always greater than the third side of the triangle.

In $\triangle CEB$, CE + EB > BC $\Rightarrow DE + EB > BC$ [CE = DE] $\Rightarrow DB > BC$(i) In $\triangle ADB$, AD + AB > BD $\Rightarrow AD + AB > BC$ [from(i)] $\Rightarrow AD + AB > BC$

Solution 25:

Given that, AB > AC $\Rightarrow \angle C > \angle B.....(i)$

Also in AADC

 $\angle ADB = \angle DAC + \angle C$ [Exterior angle]

⇒∠ADB >∠C

 $\Rightarrow \angle ADB > \angle C > \angle B$ [From(i)]

⇒∠ADB >∠B

 \Rightarrow AB > AD