

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Selina ICSE Solutions for Class 9 Maths Chapter 20 Area and Perimeter of Plane Figures

Exercise 20(A)

Solution 1:

Since the sides of the triangle are 18cm, 24cm and 30cm respectively.

$$s = \frac{18 + 24 + 30}{2}$$
$$= 36$$

Hence area of the triangle is

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{36(36-18)(36-24)(36-30)}$$

$$= \sqrt{36\times18\times12\times6}$$

$$= \sqrt{46656}$$

$$= 216 \text{sqcm}$$

Again

$$A = \frac{1}{2}$$
base×altitude

Hence

$$216 = \frac{1}{2} \times 30 \times h$$
$$h = 14.4cm$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 2:

Let the sides of the triangle are

a=3x

b=4x

c=5x

Given that the perimeter is 144 cm.

hence

$$3x + 4x + 5x = 144$$

$$\Rightarrow 12x = 144$$

$$\Rightarrow x = \frac{144}{12}$$

$$\Rightarrow x = 12$$

$$s = \frac{a+b+c}{2} = \frac{12x}{2} = 6x = 72$$

The sides are a=36 cm, b=48 cm and c=60 cm

Area of the triangle is

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{72(72-36)(72-48)(72-60)}$$

$$= \sqrt{72 \times 36 \times 24 \times 12}$$

$$= \sqrt{746496}$$

$$= 864 \text{ cm}^2$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 3:

(i)

Area of the triangle is given by

$$A = \frac{1}{2} \times AB \times AC$$
$$= \frac{1}{2} \times 4 \times 4$$

(ii)

Again area of the triangle

$$A = \frac{1}{2} \times BC \times h$$

$$8 = \frac{1}{2} \times \left(\sqrt{4^2 + 4^2}\right) \times h$$

$$h = 2.83cm$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 4:

Area of an equilateral triangle is given by

$$\frac{\sqrt{3}}{4} \times (side)^2 = A$$

$$\frac{\sqrt{3}}{4} \times (side)^2 = 36\sqrt{3}$$

$$(side)^2 = 144$$

$$side = 12 cm$$

Hence

perimeter =
$$3 \times$$
 (its side)
= 3×12
= 36 cm

Solution 5:

Since the perimeter of the isosceles triangle is 36cm and base is 16cm.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

hence the length of each of equal sides are $\frac{36-16}{2} = 10cm$

Here

It is given that

$$a = \text{equa lsides} = 10cm$$

$$b = base = 16cm$$

Let 'h' be the altitude of the isosceles triangle.

Since the altitude from the vertex bisects the base perpendicularly, we can apply Pythagoras Theorem.

Thus we have,

$$h = \sqrt{a^2 - \left(\frac{b}{2}\right)^2} = \frac{1}{2}\sqrt{4a^2 - b^2}$$

We know that

Area of the triangle =
$$\frac{1}{2}$$
 × base × altitude

Area of the triangle=
$$\frac{1}{4} \times b \times \sqrt{4a^2 - b^2}$$
$$= \frac{1}{4} \times 16 \times \sqrt{400 - 256}$$
$$= 48 \text{sq.cm}$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 6:

It is given that

$$Area = 192 sq.cm$$

$$base = 24 cm$$

Knowing the length of equal side, a, and base, b, of an isosceles triangle, the area can be calculated using the formula,

$$A = \frac{1}{4} \times b \times \sqrt{4a^2 - b^2}$$

Let 'a' be the length of an equal side.

$$Area = \frac{1}{4} \times b \times \sqrt{4a^2 - b^2}$$

$$192 = \frac{1}{4} \times 24 \times \sqrt{4a^2 - 576}$$

$$192 = 6\sqrt{4a^2 - 576}$$

$$\sqrt{4a^2 - 576} = 32$$

$$4a^2 - 576 = 1024$$

$$4a^2 = 1600$$

$$a = 20cm$$

Hence perimeter= 20 + 20 + 24 = 64 cm

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 7:

From $\triangle ABC$,

$$AB = \sqrt{AC^3 - BC^3}$$
$$= \sqrt{16^3 - 8^3}$$
$$= \sqrt{192}$$

Area of $\triangle ABC$

$$\Delta ABC = \frac{1}{2} \times 8 \times \sqrt{192}$$
$$= 4\sqrt{192}$$

Area of $\triangle BCD$

$$\Delta BCD = \frac{\sqrt{3}}{4} \times 8^2$$
$$= 16\sqrt{3}$$

Now

$$\Delta ABD = \Delta ABC - \Delta BDC$$

$$= 4\sqrt{192} - 16\sqrt{3}$$

$$= 32\sqrt{3} - 16\sqrt{3}$$

$$= 16\sqrt{3} \text{sq.cm}$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 8:

Given, AB = 8 cm, AD = 10 cm, BD = 12 cm, DC = 13 cm and \angle DBC = 90°

$$BC = \sqrt{DC^2 - BD^2}$$
$$= \sqrt{13^2 - 12^2}$$
$$= 5cm$$

Hence perimeter=8+10+13+5=36cm

Area of **∆**ABD

$$\Delta ABD = \sqrt{15 (15 - 8) (15 - 10) (15 - 12)}$$

$$= \sqrt{15 \times 7 \times 5 \times 3}$$

$$= 15\sqrt{7}$$

$$= 39.7$$

Area of ΔDBC

$$\Delta BDC = \frac{1}{2} \times 12 \times 5$$
$$= 30$$

Now

Area of
$$ABCD = area of \triangle ABD + area of \triangle BDC$$

= 39.7 + 30
= 69.7 sq. cm

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 9:

Area of the rectangular field =
$$\frac{49572}{36.72}$$
 = 135000

Let the height of the triangle be \boldsymbol{x}

$$135000 = \frac{1}{2} \times \times \times 3\times$$

$$\Rightarrow x^2 = 90000$$

Height
$$= 300 \, \text{m}$$

Base
$$= 900 \, \text{m}$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 10:

(i)

Given that the sides of a triangle are in the ratio 5:3:4.

Also, given that the perimeter of the triangle

Thus, we have, 5x + 4x + 3x = 180

$$\Rightarrow$$
 12x = 180

$$\Rightarrow x = \frac{180}{12}$$

$$\Rightarrow x = 15$$

Thus, the sides are 5 \times 15, 3 \times 15 and 4 \times 15.

That is the sides are 75 m, 45 m and 60 m.

Since the sides are in the ratio, 5:3:4, it is

a Pythagorean triplet.

Therefore, the triangle is a right angled triangle.

Area of a right angled triangle = $\frac{1}{2} \times base \times altitude$

$$\Rightarrow = \frac{1}{2} \times 45 \times 60$$

$$\Rightarrow$$
 = 45 × 30 = 1350 m²

(ii)

Consider the following figure.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

In the above figure,

The largest side is AC = 75 m.

The altitude corresponding to AC is BD.

We need to find the value of BD.

Now consider the triangles $\triangle BCD$ and $\triangle BAD$.

We have,

$$\angle B = \angle B$$
 [common]

$$BD = BD$$
 [common]

$$\angle D = \angle D = 90^{\circ}$$

Thus, by Angle-Side-Angle criterion of

congruence, we have $\triangle BCD - \triangle ABD$.

Similar triangles have similar proportionality.

Thus, we have,

$$\frac{CD}{BD} = \frac{BD}{AD}$$

$$\Rightarrow BD^2 = AD \times CD...(1)$$

From subpart(i), the sides of the triangle are

$$AC = 75 \, \text{m}$$
, $AB = 60 \, \text{m}$ and $BC = 45 \, \text{m}$

Let AD =
$$\times$$
 m \Rightarrow CD= $(75-x)$ m

Thus applying Pythgoras Theroem,

from right triangle ∆BCD, we have

$$45^2 = (75 - x)^2 + BD^2$$

$$\Rightarrow BD^2 = 45^2 - (75 - x)^2$$

$$\Rightarrow BD^2 = 2025 - (5625 + x^2 - 150x)$$

$$\Rightarrow BD^2 = 2025 - 5625 - x^2 + 150x$$

$$\Rightarrow BD^2 = -3600 - x^2 + 150x...(2)$$

Now applying Pythgoras Theroem,

from right triangle ∆ABD, we have

$$60^2 = x^2 + BD^2$$

$$\Rightarrow BD^2 = 60^2 - x^2$$

$$\Rightarrow BD^2 = 3600 - x^2...(3)$$

From equations (2) and (3), we have,

$$-3600 - x^2 + 150x = 3600 - x^2$$

$$\Rightarrow 150x = 3600 + 3600$$

$$\Rightarrow 150x = 7200$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

$$\Rightarrow x = \frac{7200}{150}$$

$$\Rightarrow x = 48$$

Thus, AD = 48 and CD = 75 - 48 = 27

Substituting the values AD=48 m

and CD=27 m in equation (1), we have

$$BD^2 = 48 \times 27$$

$$\Rightarrow$$
 BD² = 1296

$$\Rightarrow BD = 36 \text{ m}$$

The altitude of the triangle corresponding to

its largest side is BD = 36 m

(iii)

The area of the triangular field from subpart(i) is 1350 m²
The cost of levelling the field is Rs.10 per square metre.
Thus, the total cost of

levelling the field = $1350 \times 10 = Rs.13,500$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 11:

Let the height of the triangle be x cm.

Equal sides are (x+4) cm.

According to Pythagoras theorem,

$$(x+4)^2 = x^2 + 12^2$$

8x = 128

$$x = 16cm$$

Hence perimeter= 20 + 20 + 24 = 64cm

Area of the isosceles triangle is given by

Here a=20cm

b=24cm

hence

$$Area = \frac{1}{4} \times b \times \sqrt{4a^2 - b^2}$$
$$= \frac{1}{4} \times 24 \times \sqrt{1024}$$

$$= 192 sq.cm$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 12:

Each side of the triangle is
$$\frac{60}{3} = 20cm$$

Hence the area of the equilateral triangle is given by

$$A = \frac{\sqrt{3}}{4} \times 20^{2}$$
$$= 100\sqrt{3}$$
$$= 173.2 \, sq. cm$$

The height h of the triangle is given by

$$\frac{1}{2} \times 20 \times h = 173.2$$

$$h = 17.32cm$$

Solution 13:

The area of the triangle is given as 150sq.cm

$$\frac{1}{2} \times x \times (x+5) = 150$$

$$x^{2} + 5x - 300 = 0$$

$$(x+20)(x-15) = 0$$

$$x = 15$$

Hence AB=15cm, AC=20cm and

$$BC = \sqrt{15^2 + 20^2}$$
$$= 25cm$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 14:

Let the two sides be x cm and (x-3) cm.

Now

$$\frac{1}{2} \times x \times (x-3) = 54$$

$$x^2 - 3x - 108 = 0$$

$$(x-12)(x+9) = 0$$

$$x = 12cm$$

Hence the sides are 12cm, 9cm and
$$\sqrt{12^2 + 9^2} = 15cm$$

The required perimeter is 12+9+15=36cm.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 15:

Area of
$$\triangle ABC = \frac{1}{4} \times 36 \times \sqrt{4 \times 30^2 - 36^2}$$

$$= \frac{1}{4} \times 36 \times \sqrt{2304}$$

$$= \frac{1}{4} \times 36 \times 48$$

$$= 432$$

Since AB=AC and
$$\angle BOC = 90^{\circ}$$

$$\angle BOD = \angle COD = 45^{\circ}$$

hence
$$\angle OBD = 45^{\circ}$$
 and $OD = BD = 18cm$

Now

Area of
$$\triangle BOC = \frac{1}{2} \times 36 \times 18$$

= 324

Area of
$$ABOC$$
 = Area of $\triangle ABC$ - Area of $\triangle BOC$
= $432 - 324$
= $108sq.cm$

Exercise 20(B)

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 1:

Area =
$$\frac{1}{2}$$
 × one diagonal × sum of the lengths of the

perpendiculars drawn from it on the remaining

two vertices.

$$= \frac{1}{2} \times 30 \times (11 + 19)$$
$$= 450 \text{sq.cm}$$

Solution 2:

Area of the quadriletaral =
$$\frac{1}{2}$$
 × the product of the diagonals.
= $\frac{1}{2}$ × 16 × 13

= 104cm³

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 3:

Consider the figure:

From the right triangle ABD we have

$$AB = \sqrt{26^2 - 24^2}$$

$$= 2\sqrt{13^2 - 12^2}$$

$$= 2(5)$$

$$= 10$$

The area of right triangle ABD will be:

$$\Delta ABD = \frac{1}{2} (AB) (BD)$$

$$= \frac{1}{2} (10) (24)$$

$$= 120$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Again from the equilateral triangle BCD we have $\ CP \perp BD$

$$PC = \sqrt{24^2 - 12^2}$$
$$= 12\sqrt{2^2 - 1^1}$$
$$= 12\sqrt{3}$$

Therefore the area of the triangle BCD will be:

$$\Delta BCD = \frac{1}{2} (BD) (PC)$$
$$= \frac{1}{2} (24) (12\sqrt{3})$$
$$= 144\sqrt{3}$$

Hence the area of the quadrilateral will be:

$$\triangle ABD + \triangle BCD = 120 + 144\sqrt{3}$$

= 369.41 cm²

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 4:

The figure can be drawn as follows:

Here ABD is a right triangle. So the area will be:

$$\Delta ABD = \frac{1}{2} (24)(32)$$
= 384

Again

$$BD = \sqrt{24^2 + 32^2}$$
$$= 8\sqrt{3^2 + 4^2}$$
$$= 8(5)$$
$$= 40$$

Now BCD is an isosceles triangle and BP is perpendicular to BD, therefore

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

$$DP = \frac{1}{2}BD$$
$$= \frac{1}{2}(40)$$
$$= 20$$

From the right triangle DPC we have

$$PC = \sqrt{52^2 - 20^2}$$
$$= 4\sqrt{13^2 - 5^2}$$
$$= 4(12)$$
$$= 48$$

So

$$\Delta DPC = \frac{1}{2} (40)(48)$$
= 960

Hence the area of the quadrilateral will be:

$$\Delta ABD + \Delta DPC = 960 + 384$$
$$= 1344 \text{ cm}^2$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 5:

Let the width be x and length 2x km.

Hence

$$2(x+2x) = \frac{3}{5}$$

$$x = \frac{1}{10}km$$

$$= 100m$$

Hence the width is 100m and length is 200m

The required area is given by

$$A = length \times width$$

Solution 6:

Length of the laid with grass=85-5-5=75m

Width of the laid with grass=60-5-5=50m

Hence area of the laid with grass is given by

$$A = 75 \times 50$$

$$= 3750 sq.m$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 7:

Area of the rectangle is given by

$$A = l \times b$$

$$=6\times4$$

$$= 24 sq.cm$$

Let h be the height of the triangle ,then

$$\frac{1}{2} \times base \times h = 3A$$

$$\frac{1}{2} \times 6 \times h = 3 \times 24$$

$$h = 24cm$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 8:

Consider the following figure.

Thus the required area = area shaded in blue + area shaded in red

- = Area ABPQ + Area TUDC + Area A'PUD' + Area QB'C'T
- = 2Area ABPQ + 2Area QB'C'T
- =2(Area ABPQ +Area QB'C'T)

Area of the footpath is given by

$$A = 2 \times (25 + 25 + 17 + 17)$$

- $= 168 \, sg. \, m$
- $= 1680000 \, sg.cm$

Hence number of tiles required =
$$\frac{1680000}{400}$$
 = 4200

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 9:

Perimeter of the garden

$$s = \frac{300}{0.75}$$

=400sq.m

Again, length of the garden is given to be 120 m. hence breadth of the garden b is given by

$$2(l+b)=S$$

$$2(120+b) = 400$$

$$b = 80m$$

Hence area of the field

$$A = 120 \times 80$$

$$=9600sq.m$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 10:

Length of the rectangle=x

Width of the rectangle= $\frac{4}{7}$ x

Hence its perimeter is given by

$$2\left(x + \frac{4}{7}x\right) = y$$

$$2\left(\frac{11x}{7}\right) = y$$

$$\frac{22x}{7} = y$$

Again it is given that the perimeter is 4400cm.

Hence

$$\frac{22x}{7} = 4400$$

$$x = 1400$$

Length of the rectangle=1400 cm = 14 m

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 11:

(i)

Breadth of the verandah=x

Length of the verandah=x+3

According to the question

$$2(x+(x+3))=x(x+3)$$

$$4x + 6 = x^2 + 3x$$

$$x^2 - x - 6 = 0$$

(ii)

From the above equation

$$x^2 - x - 6 = 0$$

$$(x-3)(x+2)=0$$

$$x = 3$$

Hence breadth=3m

Length = 3+3=6m

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 12:

Consider the following figure.

Thus, the area of the shaded portion

Dimensions of ABCD: $45 \text{ m} \times 15 \text{ m}$ Thus, the area of ABCD = $45 \times 15 = 675 \text{ m}^2$ Dimensions of EFGH: $80 \text{ m} \times 8 \text{ m}$ Thus, the area of EFGH = $80 \times 8 = 640 \text{ m}^2$ Dimensions of IJKL: $15 \text{ m} \times 8 \text{ m}$ Thus, the area of IJKL = $80 \times 8 = 120 \text{ m}^2$ Therefore, from equation (1), the area of the shaded portion = $675 + 640 - 120 = 1195 \text{ m}^2$

Solution 13:

First we have to calculate the area of the hall.

$$Area = 45 \times 32$$
$$= 1440 m^2$$

$$Cost = \frac{40}{1.20} \times 1440$$
$$= 48,000$$

We need to find the cost of carpeting of 80 cm = 0.8 m wide carpet, if the rate of carpeting is Rs. 25. Per metre.

Then

$$Cost = \frac{25}{0.8} \times 1440$$
$$= Rs.45,000$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 14:

Let a be the length of each side of the square.

Hence

$$2a^2 = (diagonal)^2$$

$$a^2 = \frac{15^2}{2}$$

$$a^2 = 112.5$$

$$a = 10.60$$

Hence

Area =
$$a^2$$

= 112.5sq.m

And

Perimeter = 4a = 42.43m

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 15:

Consider the following figure.

(i)

The length of the lawn = 30 - 2 - 2 = 26 m

The breadth of the lawn = 12 - 2 = 10 m

(ii)

The orange shaded area in the figure is the required area.

Area of the flower bed is calculated as follows:

$$A = 10 \times 2 + 10 \times 2 + 30 \times 2$$

$$= 20 + 20 + 60$$

$$=100\,\mathrm{sq.m}$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 16:

Area of the floor = 15×8

= 120 sq.m

Area of one tiles = 0.50×0.25

= 0.125 sq.m

Number of tiles required

$$n = \frac{\text{Area of floor}}{}$$

Area of tiles

$$=\frac{120}{0.125}$$

= 960

Area of carpet uncovered =2 $(1 \times 15 + 1 \times 6)$

$$=42sq.m$$

Fraction of floor uncovered =
$$\frac{42}{120} = \frac{7}{20}$$

Solution 17:

Since

 $Area = Base \times Height$

$$24 \times 12 = 18 \times h$$

$$h = \frac{24 \times 12}{18}$$

= 16m

Hence the distance between the shorter sides is 16m.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 18:

At first we have to calculate the area of the triangle having sides 10cm,12cm and 16cm. let the area be S.

Now

$$S = \frac{10 + 12 + 16}{2}$$
= 19 cm

$$A = \sqrt{19 \times (19 - 10) \times (19 - 12) \times (19 - 16)}$$

$$= \sqrt{19 \times 9 \times 7 \times 3}$$
= 59.9sq.cm

Area of parallelogram =
$$2A$$

= 2×59.9
= 119.8 sq.cm

Again

Area=base x height

Here base=10cm

Hence

$$height = \frac{Area}{base}$$

$$= \frac{119.8}{10}$$

$$= 11.98cm$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 19:

(i)

We know that

Area of Rhombus=
$$\frac{1}{2}$$
 × AC×BD

Here A=216sq.cm

AC=24cm

BD=?

Now

$$A = \frac{1}{2} \times AC \times BD$$

$$216 = \frac{1}{2} \times 24 \times BD$$

$$BD = 18cm$$

(ii)

Let a be the length of each side of the rhombus.

$$a^2 = \left(\frac{AC}{2}\right)^2 + \left(\frac{BD}{2}\right)^2$$

$$a^2 = 12^2 + 9^2$$

$$a^2 = 225$$

$$\alpha = 15 \,\mathrm{cm}$$

(iii)

Perimeter of the rhombus=4a=60cm.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 20:

Let a be the length of each side of the rhombus.

4a = perimeter

$$4a = 52$$

$$\alpha = 13 \text{cm}$$

(i)

It is given that,

AC=24cm

We have to find BD.

Now

$$a^2 = \left(\frac{AC}{2}\right)^2 + \left(\frac{BD}{2}\right)^2$$

$$13^2 = 12^2 + \left(\frac{BD}{2}\right)^2$$

$$\left(\frac{BD}{2}\right)^2 = 5^2$$

$$BD = 10 \text{cm}$$

Hence the other diagonal is 10cm.

(ii)

Area of the rombus =
$$\frac{1}{2} \times AC \times BD$$

= $\frac{1}{2} \times 24 \times 10$
= 120 sq. cm

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 21:

Let a be the length of each side of the rhombus.

4a = perimeter

4a = 46

a = 11.5 cm

We know that,

 $Area = Base \times Height$

 $=11.5 \times 8$

=92sq.cm

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 22:

The diagram is redrawn as follows:

Here

AF=1.2m,EF=0.3m,DC=0.6m,BK=1.8-0.6-0.3=0.9m

Hence

Area of
$$ABCDEF$$
 = Area of $AHEF$ + Area of $HKCD$
+ ΔKBC
= $1.2 \times 0.3 + 2 \times 0.6 + \frac{1}{2} \times 2 \times 0.9$
= 2.46 sq.m

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 23:

Here we found two geometrical figure, one is a triangle and other is the trapezium.

Now

Area of the triangle =
$$\frac{1}{2} \times 12 \times 25$$

= 150sq.m

Area of the trapezium =
$$\frac{1}{2} \times (25 + 15) \times (\sqrt{26^2 - (25 - 15)^2})$$

= 20×24
= 480sq.m

hence area of the whole figure=150+240=630sq.m

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 24:

We can divide the field into three triangles and one trapezium.

Let A,B,C be the three triangular region and D be the trapezoidal region.

Now

Area of
$$A = \frac{1}{2} \times AD \times GE$$

= $\frac{1}{2} \times (50 + 40 + 15 + 25) \times 60$
= 3900 sq.m

Area of
$$B = \frac{1}{2} \times AF \times BF$$

= $\frac{1}{2} \times 50 \times 50$
= 1250sq.m

Area of
$$B = \frac{1}{2} \times HD \times CH$$

= $\frac{1}{2} \times 25 \times 25$
= 312.5sq.m

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Area of
$$D = \frac{1}{2} \times (BF + CH) \times (FG + GH)$$

= $\frac{1}{2} \times (50 + 25) \times (40 + 15)$
= $\frac{1}{2} \times 75 \times 55$
= 2062.5sq.m

Area of the figure=Area of A+ Area of B+ Area of C+ Area of D

=3900+1250+312.5+2062.5

=7525sq.m

Solution 25:

Let x be the width of the footpath.

Then

Area of footpath =
$$2 \times (30 + 24)x + 4x^2$$

= $4x^2 + 108x$

Again it is given that area of the footpath is 360sq.m.

Hence

$$4x^{2} + 108x = 360$$

$$x^{2} + 27x - 90 = 0$$

$$(x - 3)(x + 30) = 0$$

$$x = 3$$

Hence width of the footpath is 3m.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 26:

Area of the square is 484.

Let a be the length of each side of the square.

Now

$$a^2 = 484$$

$$a = 22m$$

Hence length of the wire is=4x22=88m.

(i)

Now this 88m wire is bent in the form of an equilateral triangle.

Side of the triangle =
$$\frac{88}{3}$$

= 29.3m
Area of the triangle = $\frac{\sqrt{3}}{4} \times (\text{side})^2$
= $\frac{\sqrt{3}}{4} \times (29.3)^2$
= 372.58m²

(ii)

Let x be the breadth of the rectangle.

Now

$$2(l+b) = 88$$

$$16 + x = 44$$

$$x = 28m$$

Hence area=16x28=448m2

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 27:

(i)

Area of
$$\triangle$$
 EBC = $\frac{1}{4} \times 8 \times \sqrt{4 \times 10^2 - 8^2}$
= $\frac{1}{4} \times 8 \times 18.3$
= 36.6 cm²

Again

Area of
$$\triangle EBC = \frac{1}{2} \times 8 \times h$$

 $36.6 = 4h$
 $h = 9.15$

Area of ABCD =
$$\frac{1}{2} \times (12 + 20) \times 9.15$$

= $\frac{1}{2} \times 32 \times 9.15$
= 146.64sq.cm

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

(ii)

Area of ABCD=
$$\frac{1}{2}$$
×(8+14)×($\sqrt{10^3-6^3}$)
$$=\frac{1}{2}$$
×22×8
$$= 88$$
sq.cm

(iii)

For the triangle EBC,

S=19cm

Area of
$$\triangle EBC = \sqrt{19 \times (19 - 16) \times (19 - 12) \times (19 - 10)}$$

= $\sqrt{19 \times 3 \times 7 \times 9}$
= 59.9 sq.cm

Let h be the height.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Area of
$$\triangle$$
 EBC = $\frac{1}{2} \times 12 \times h$
 $\Rightarrow 59.9 = 6h$
 $\Rightarrow h = \frac{59.9}{6} = 9.98 \text{ cm}$
Area of ABCD = $\frac{1}{2} \times (20 + 32) \times 9.98$

$$= \frac{1}{2} \times 52 \times 9.98$$

$$= 259.48 cm^2$$

In the given figure, we can observe that the non-parallel sides are equal and hence it is an isosceles

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

trapezium.

Therefore, let us draw DE and CF perpendiculars to AB.

Thus, the area of the parallelogram is given by

Since AB = AE + EF + FB and CD = EF = 18 cm, we have

$$30 = AE + 18 + FB$$

$$\Rightarrow$$
 30 = AE + 18 + AE

$$\Rightarrow$$
 2AE + 18 = 30

$$\Rightarrow$$
 2AE = 30 - 18

$$\Rightarrow$$
 AE = 6 cm

Now, consider the right angled triangle ADE.

$$AD^2 = AE^2 + DE^2$$

$$\Rightarrow 12^2 = 6^2 + DF^2$$

$$\Rightarrow$$
 144 = 36 + DE²

$$\Rightarrow DE^2 = 144 - 36$$

$$\Rightarrow$$
 DE² = 108

$$\Rightarrow$$
 DE = $\sqrt{36 \times 3}$

$$\Rightarrow$$
 DE = $6\sqrt{3}$

 $Area(\square ABCD) = Area(\triangle ADE) + Area(\square DEFC) + Area(\triangle CFB)$

$$\Rightarrow$$
 Area(\square ABCD) = $\frac{1}{2} \times 6 \times 6\sqrt{3} + 18 \times 6\sqrt{3} + \frac{1}{2} \times 6 \times 6\sqrt{3}$

$$\Rightarrow$$
 Area(\square ABCD) = $6 \times 6\sqrt{3} + 18 \times 6\sqrt{3}$

⇒ Area(
$$\square$$
ABCD) = $144\sqrt{3}$ = 249.41cm²

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 28:

Let b be the breadth of rectangle, then its perimeter

$$2(x+b) = 70$$

$$x + b = 35$$

$$b = 35 - x$$

Again

$$x \times b = 300$$

$$x(35-x)=300$$

$$x^2 - 35x + 300 = 0$$

$$(x-15)(x-20)=0$$

$$x = 15,20$$

Hence its length is 20cm and width is 15cm.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 29:

Let b be the width of the rectangle.

$$x \times b = 640$$

$$b = \frac{640}{x}$$

Again perimeter of the rectangle is 104m.

Hence

$$2\left(x + \frac{640}{x}\right) = 104$$

$$x^2 - 52x + 640 = 0$$

$$(x-32)(x-20)=0$$

$$x = 32, 20$$

Hence

length=32m

width=20m.

Solution 30:

Let a be the length of the sides of the square.

According to the question

$$2a \times (a+6) = 3a^2$$

$$2a^2 + 12a = 3a^2$$

$$a = 12$$

Hence sides of the square are 12cm each and

Length of the rectangle = 2a = 24cm

Width of the rectangle=a+6=18cm.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 31:

The figure is shown below:

$$\frac{\text{Area of } \Delta ABP}{\text{Area of trapezium } APCD} = \frac{1}{5}$$

$$\Rightarrow \frac{\frac{1}{2} \times 12 \times (12 - CP)}{\frac{1}{2} \times (12 + CP) \times 12} = \frac{1}{5}$$

$$\Rightarrow 60 - 5CP = 12 + CP$$

$$\Rightarrow 6CP = 48$$

$$\Rightarrow CP = 8 cm$$

Solution 32:

Length of the wall=45+2=47m

Breath of the wall=30+2=32m

Hence area of the inner surface of the wall is given by

$$A = (47 \times 2 \times 2.4) + (32 \times 2 \times 2.4)$$
$$= 225.6 + 153.6$$
$$= 379.2 m2$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 33:

Let a be the length of each side.

$$a^2 = 576$$

$$\alpha = 24 \,\mathrm{cm}$$

$$4a = 96cm$$

Hence length of the wire=96cm

(i)

For the equilateral triangle,

$$side = \frac{96}{3} = 32 \, \text{cm}$$

$$Area = \frac{\sqrt{3}}{4} (side)^2$$

$$=\frac{\sqrt{3}}{4}\times32^2$$

$$=256\sqrt{3}$$
sq.cm

(ii)

Let the adjacent side of the rectangle be x and y cm.

Since the perimeter is 96 cm, we have,

$$2(x + y) = 96$$

Hence

$$x + y = 48$$

$$x - y = 4$$

$$x = 26$$

$$y = 22$$

Hence area of the rectangle is = $26 \times 22 = 572$ sq.cm

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 34:

Let 'y' and 'h' be the area and the height of the first parallelogram respectively.

Let 'height' be the height of the second parallelogram

base of the first parallelogram=
$$\frac{y}{h}$$
 cm

base of second parallelogram=
$$\left(\frac{y}{h} + x\right)$$
 cm

$$\left(\frac{y}{h} + x\right) \times height = 2y$$

$$height = \frac{2hy}{y + hx}$$

Solution 35:

$$EF = \frac{1}{2} \times (AD + BC) = 26 \,\mathrm{cm}$$

Area of the trapezium=
$$\frac{1}{2} \times (AD + BC) \times h$$

= 26×15

$$= 390 \, \text{cm}^2$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 36:

Let a and b be the sides of the rectangle

Since the perimeter is 92 m, we have,

$$2(a+b)=92$$

$$\Rightarrow a + b = 46 m...(1)$$

Also given that diagonal of a trapezium is 34 m.

$$\Rightarrow a^2 + b^2 = 34^2 \dots (2)$$

We know that

$$(a + b)^2 - a^2 - b^2 = 2ab$$

From equations (1) and (2), we have,

$$46^2 - 34^2 = 2ab$$

$$\Rightarrow ab = \frac{960}{2}$$

$$\Rightarrow ab = 480 \text{ m}^2$$

Exercise 20(C)

Solution 1:

Let r be the radius of the circle.

(i)

$$2r = 28cm$$

circumference = $2\pi r$

 $=28\pi \text{cm}$

(ii)

$$area = \pi r^2$$

$$=\pi\left(\frac{28}{2}\right)^2$$

$$= 196\pi \text{cm}^2$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 2:

Let r be the radius of the circular field

$$2\pi r = 308$$

$$\Rightarrow r = \frac{308}{2\pi}$$

$$\Rightarrow r = \frac{308}{2} \times \frac{7}{22}$$

$$\Rightarrow$$
 r = 49 m

(ii)

area =
$$\pi r^2$$

= $\frac{22}{7} \times (49)^2$
= 7546 m^2

Solution 3:

Let r be the radius of the circle.

$$2\pi r + 2r = 116$$

$$2r(\pi+1)=116$$

$$r = \frac{116}{2 \left(\pi + 1\right)}$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 4:

Circumference of the first circle

$$S_1 = 2\pi \times 25$$

$$= 50\pi \text{cm}$$

Circumference of the second circle

$$S_2 = 2\pi \times 18$$

$$=36\pi \mathrm{cm}$$

Let r be the radius of the resulting circle.

$$2\pi r = 50\pi + 36\pi$$

$$2\pi r = 86\pi$$

$$r = \frac{86\pi}{2\pi}$$

$$=43cm$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 5:

Circumference of the first circle

$$S_1 = 2\pi \times 48$$

$$= 96\pi cm$$

Circumference of the second circle

$$S_1 = 2\pi \times 13$$

$$=26\pi cm$$

Let r be the radius of the resulting circle.

$$2\pi r = 96\pi - 26\pi$$

$$2\pi r = 70\pi$$

$$r = \frac{70\pi}{2\pi}$$

Hence area of the circle

$$A=\pi r^2$$

$$= \pi \times 35^2$$

$$= 3850 cm^{2}$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 6:

Let the area of the resulting circle be r.

$$\pi \times (16)^{2} + \pi \times (12)^{2} = \pi \times r^{2}$$

$$256\pi + 144\pi = \pi \times r^{2}$$

$$400\pi = \pi \times r^{2}$$

$$r^{2} = 400$$

$$r = 20 \text{ cm}$$

Hence the radius of the resulting circle is 20cm.

Solution 7:

Area of the circle having radius 85m is

$$A = \pi \times (85)^2$$
$$= 7225\pi \text{m}^2$$

Let r be the radius of the circle whose area is 49 times of the given circle.

$$\pi r^{2} = 49 \times (\pi \times 5^{2})$$

$$r^{2} = (7 \times 5)^{2}$$

$$r = 35$$

Hence circumference of the circle

$$S = 2\pi r$$
$$= 2\pi \times 35$$
$$= 220 \text{ m}$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 8:

Area of the rectangle is given by

$$A = 55 \times 42$$

$$= 2310 cm^{2}$$

For the largest circle, the radius of the circle will be half of the sorter side of the rectangle.

Hence r=21cm.

Area of the circle =
$$\pi \times (21)^2$$

$$= 1384.74 \, \text{cm}^2$$

Area remaining =
$$2310 - 1384.74$$

$$= 925.26$$

Hence

the volume of the circle: area remaining =1384.74:915.26

$$=3:2$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 9:

Area of the square is given by

$$A = 28^2$$
$$= 784 \text{cm}^2$$

Since there are four identical circles inside the square.

Hence radius of each circle is one fourth of the side of the square.

Area of one circle =
$$\pi \times 7^2$$

= 154cm^2

Area of four circle =
$$4 \times 154 \,\mathrm{cm}^2$$

$$= 616 \, \text{cm}^2$$

Area remaining =
$$784 - 616$$

= 168cm^2

Area remaining in the cardboard is = 168cm

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 10:

Let the radius of the two circles be 3r and 8r respectively.

area of the circle having radius
$$3r = \pi (3r)^2$$

area of the circle having radius
$$8r = \pi (8r)^2$$

According to the question

$$64\pi r^2 - 9\pi r^2 = 2695\pi$$

 $55r^2 = 2695$
 $r^2 = 49$
 $r = 7$ cm

Hence radius of the smaller circle is $3 \times 7 = 21$ cm

Area of the smaller circle is given by

$$A = \pi r^2 = \frac{22}{7} \times 21^2 = 1386 \text{ cm}^2$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 11:

Let the diameter of the three circles be 3d, 5d and 6d respectively.

Now

$$\pi \times 3d + \pi \times 5d + \pi \times 6d = 308$$

$$14\pi d = 308$$

$$d = 7$$

radius of the smallest circle=
$$\frac{21}{2}$$
 = 10.5

Area= $\pi \times (10.5)^2$
= 346

radius of the largest circle= $\frac{42}{2}$ = 21

Area= $\pi \times (21)^2$
= 1385.5

difference= 1385.5 - 346
= 1039.5

Solution 12:

Area of the ring =
$$\pi (20)^2 - \pi (15)^2$$

= $400\pi - 225\pi$
= 175π
= 549.7 cm²

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 13:

Let r be the radius of the circular park.

$$2\pi r = 55$$

$$r = \frac{55}{2\pi}$$

= 8.75 m

area of the park =
$$\pi \times (8.75)^2 = 240.625 \text{ m}^2$$

Radius of the outer circular region including the path is given by

$$R = 8.75 + 3.5$$

= 12.25 m

Area of that circular region is

$$A = \pi \times (12.25)^2 = 471.625 \text{ m}^2$$

Hence area of the path is given by

Area of the path =
$$471.625 - 240.625 = 231 \text{ m}^2$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 14:

Let r be the radius of the circular garden A.

Since the circumference of the garden A is 1.760 Km = 1760m, we have,

$$2\pi r = 1760 \text{ m}$$

⇒
$$r = \frac{1760 \times 7}{2 \times 22} = 280 \text{ m}$$

Area of garden A =
$$\pi r^2 = \frac{22}{7} \times 280^2 \text{ m}^2$$

Let R be the radius of the circular garden B.

Since the area of garden B is 25 times the area of garden A, we have,

$$\pi R^2 = 25 \times \pi r^2$$

$$\Rightarrow \pi R^2 = 25 \times \pi \times 280^2$$

$$\Rightarrow R^2 = 1960000$$

$$\Rightarrow$$
 R = 1400 m

Thus circumference of garden B = $2\pi R = 2 \times \frac{22}{7} \times 1400 = 8800 \text{ m} = 8.8 \text{ Km}$

Solution 15:

Diameter of the wheel = 84 cm

Thus, radius of the wheel = 42 cm

Circumference of the wheel =
$$2 \times \frac{22}{7} \times 42 = 264$$
 cm

In 264 cm, wheel is covering one revolution.

Thus, in 3.168 Km = 3.168×100000 cm, number of revolutions

covered by the wheel =
$$\frac{3.168}{264} \times 100000 = 1200$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 16:

the car travells in 10minutes=
$$\frac{66}{6}$$

= 11km
= 1100000cm

Circumference of the wheel = distance covered by the wheel in one revolution Thus, we have,

Circumference =
$$2 \times \frac{22}{7} \times \frac{80}{2} = 251.43$$
 cm

Thus, the number of revolutions covered

by the wheel in 1100000 cm =
$$\frac{1100000}{251.43} \approx 4375$$

Solution 17:

radius of the wheel =
$$\frac{42}{2}$$

= 21cm
circumference of the wheel = $2\pi \times 21$
= 132cm

Distance travelled in one minute = 132×1200

$$= 1.584 \text{km}$$

hence the speed of the train =
$$\frac{1.584 \text{ km}}{\frac{1}{60} \text{ hr}}$$
$$= 95.04 \text{ km/hr}$$

Solution 18:

Time interval is
$$9.05 - 8.30 = 35$$
 minutes

Area covered in one 60 minutes=
$$\pi \times 8^2 = 201 \text{cm}^2$$

Hence area swept in 35 minutes is given by

$$A = \frac{201}{60} \times 35 = 117 \frac{1}{3} \text{ cm}^2$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 19:

Let R and r be the radius of the big and small circles respectively.

Given that the circumference of the bigger circle is 396 cm

Thus, we have,

 $2\pi R = 396 \text{ cm}$

$$\Rightarrow R = \frac{396 \times 7}{2 \times 22}$$

$$\Rightarrow$$
 R = 63 cm

Thus, area of the bigger circle = πR^2

$$=\frac{22}{7}\times63^{2}$$

$$= 12474 \text{ cm}^2$$

Also given that the circumference of the smaller circle is 374 cm

$$\Rightarrow 2\pi r = 374$$

$$\Rightarrow r = \frac{374 \times 7}{2 \times 22}$$

$$\Rightarrow$$
 r = 59.5 cm

Thus, the area of the smaller circle = πr^2

$$=\frac{22}{7}\times59.5^2$$

$$= 11126.5 \text{ cm}^2$$

Thus the area of the shaded portion = $12474 - 11126.5 = 1347.5 \text{ cm}^2$

Solution 20:

From the given data, we can calculate the area of the outer circle and then the area of inner circle and

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

hence the width of the shaded portion.

Given that the circumference of the outer circle is 132 cm

Thus, we have, $2\pi R = 132$ cm

$$\Rightarrow R = \frac{132 \times 7}{2 \times 22}$$

$$\Rightarrow$$
 R = 21 cm

Area of the bigger circle = πR^2

$$=\frac{22}{7}\times21^{2}$$

$$= 1386 \text{ cm}^2$$

Also given the area of the shaded portion.

Thus the area of the inner circle = Area of the outer circle - Area of the shaded portion

$$=616 \text{ cm}^2$$

$$\Rightarrow \pi r^2 = 616$$

$$\Rightarrow r^2 = \frac{616 \times 7}{22}$$

$$\Rightarrow$$
 r² = 196

$$\Rightarrow$$
 r = 14 cm

Thus, the width of the shaded portion = 21 - 14 = 7 cm

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 21:

Let the radius of the field is r meter.

Therefore circumference of the field will be: $2\pi r$ meter.

Now the cost of fencing the circular field is 52,800 at rate 240 per meter.

Therefore

$$2\pi r \cdot 240 = 52800$$

$$r = \frac{52800 \times 7}{2 \times 240 \times 22}$$

$$= 35$$

Thus the radius of the field is 35 meter.

Now the area of the field will be:

$$\pi r^2 = \left(\frac{22}{7}\right) \cdot 35^2$$
$$= 3850 \text{ m}^2$$

Thus the cost of ploughing the field will be:

$$3850 \times 12.5 = 48,125 \text{ rupees}$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 22:

Let r and R be the radius of the two circles.

$$r + R = 10$$
 ...(1)

$$\pi r^2 + \pi R^2 = 58\pi \qquad \dots (2)$$

Putting the value of r in (2)

$$r^{2} + R^{2} = 58$$

$$(10-R)^{2} + R^{2} = 58$$

$$100 - 20R + R^{2} + R^{2} = 58$$

$$2R^{2} - 20R + 42 = 0$$

$$R^{2} - 10R + 21 = 0$$

$$(R-3)(R-7) = 0$$

$$R = 3,7$$

Hence the radius of the two circles is 3cm and 7cm respectively.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 23:

From the figure:

$$AB = 28 \,\mathrm{cm}$$

$$BC = 21 \text{cm}$$

$$AC = \sqrt{AB^2 + BC^2}$$
$$= \sqrt{28^2 + 21^2}$$
$$= 35 \text{cm}$$

Hence diameter of the circle is 35cm and hence

Area =
$$\pi \times \left(\frac{35}{2}\right)^2$$

= 962.5 cm²

Area of the rectangle =
$$28 \times 21$$

= 588cm^2

Hence area of the shaded portion is given by

$$A = 962 - 588 = 374.5$$
 cm²

Solution 24:

Since the diameter of the circle is the diagonal of the square inscribed in the circle.

Let a be the length of the sides of the square.

Hence

$$\sqrt{2}a = 2 \times 7$$

$$a = \sqrt{2} \times 7$$

$$a^2 = 98$$

Hence the area of the square is 98sq.cm.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 25:

Let a be the length of the sides of the equilateral triangle.

$$\frac{\sqrt{3}}{4}a^2 = 484\sqrt{3}$$

$$a^2 = 1936$$

$$a = 44 \,\mathrm{cm}$$

$$4a = 176$$
cm

Hence the length of the wire is 176cm.

Let r be the radius of the circle.

Hence

$$2\pi r = 176$$

$$r = 28$$

$$\pi r^2 = 2464 \text{ cm}^2$$

Hence the area of the circle is $2464~\mathrm{cm}^2$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 26:

Given the diameter of the front and rear wheels are 63 cm = 0.63 m and 1.54 m respectively.

Radius of the rear wheel =
$$\frac{1.54}{2}$$
 = 0.77 m

and radius of the front wheel =
$$\frac{0.63}{2}$$
 = 0.315 m

Distance travelled by tractor in one revolution of rear wheel

= circumference of the rear wheel

 $=2\pi r$

$$=2 \times \frac{22}{7} \times 0.77 = 4.84 \text{ m}$$

The rear wheel rotates at $24\frac{6}{11}$ revolutions per minute

$$=\frac{270}{11}$$
 revolutions per minute

Since in one revolution the distance travelled by the rear wheel = 4.84 m

So, in
$$\frac{270}{11}$$
 revolutions, the tractor travels $\frac{270}{11} \times 4.84 = 118.8$ m

Let the number of revolutions made by the front wheel be x.

- (i) Now, number of revolutions made by the front wheelin one minute
- × arcumference of the wheel
- = the distance travalled by the tractor in one minute

$$\Rightarrow \times \times 2 \times \frac{22}{7} \times 0.315 = 118.8$$

$$\Rightarrow x = \frac{118.8 \times 7}{2 \times 22 \times 0.315} = 60$$

- (ii) Distance travelled by the tractor in 40 minutes
- = Number of revolutions made by the rear wheel in 40 minutes
- × drcumference of the rear wheel

$$=\frac{270}{11} \times 40 \times 4.84 = 4752 \text{ m}$$

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 27:

Let the radius of the dirdes be r_1 and r_2 .

$$So_1 r_1 + r_2 = 12 \Rightarrow r_2 = 12 - r_1$$

Sum of the areas of the dirdes = 74n

$$\Rightarrow \Pi r_1^2 + \Pi r_2^2 = 74\Pi$$

$$\Rightarrow r_1^2 + r_2^2 = 74$$

$$\Rightarrow r_1^2 + (12 - r_1)^2 = 74$$

$$\Rightarrow r_1^2 + 144 - 24r_1 + r_1^2 = 74$$

$$\Rightarrow 2r_1^2 - 24r_1 + 70 = 0$$

$$\Rightarrow r_1^2 - 12r_1 + 35 = 0$$

$$\Rightarrow (r_1 - 7)(r_1 - 5) = 0$$

$$\Rightarrow r_1 = 7$$
 or $r_1 = 5$

If
$$r_1 = 7$$
 cm, then $r_2 = 5$ cm

If
$$r_1 = 5$$
 cm, then $r_2 = 7$ cm

So, the diameters of the circles will be 10 cm and 14 cm.

Shop No. 5, "Umang" Vasant Utsav C H S Ltd., Thakur Village, Kandivali E, Mumbai – 400 101 Phone : 8828132765, 9833035468 Email : favouriteacademy@gmail.com

Solution 28:

If AB =
$$\times$$
, AC = $\times\sqrt{2}$

Diameter of the circle = diagonal of the square

$$\Rightarrow$$
 2r = $\times\sqrt{2}$

$$\Rightarrow r = \frac{x\sqrt{2}}{2}$$

Area of the circle = πr^2

$$= \Pi \left(\frac{x\sqrt{2}}{2} \right)^2$$
$$= \Pi \left(\frac{x^2 2}{4} \right)$$
$$= \frac{\Pi x^2}{2}$$

Area of the square = x^2

Required ratio =
$$\frac{\frac{\pi x^2}{2}}{\frac{2}{x^2}}$$
$$= \frac{\pi}{2}$$
$$= \frac{22}{7} \times \frac{1}{2}$$
$$= \frac{11}{7}$$

Hence, the required ratio is 11:7.